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ABSTRACT

With recent advances in science and technology, researchers are often provided

with unprecedented amounts of complex data to analyze. The structure of the data,

due to being high dimensional, discrete, incomplete, extrapolating meaningful

information from these data requires models that incorporate knowledge about

the underlying systems and implement efficient computation methods. In this

thesis, we have developed statistical models and inference algorithms (using

Monte Carlo methods and optimization methods) comprehensively undertaken

their performance analysis for several complex problem domains. These domains

include: inverse problems in radiation detection; data fusion and classification in

high dimensional microbiome studies; and contingency table analysis for inferring

voting patterns in election polling data with missing information.

Specifically, Chapter II describes a hierarchical Bayesian model and state-

of-art Monte Carlo sampling method to solve the unfolding problem, i.e., to

estimate the spectrum of an unknown neutron source from the data detected

by an organic scintillator. The proposed approach is compared to three existing

methods using simulated data to enable controlled benchmarks. Our results show

that the proposed method has competitive unfolding performance compared to

existing approaches in terms of accuracy and robustness against limited detection

events, while requiring less user supervision. The proposed method also provides

additional posterior confidence measures.

xv



Chapter III develops a Bayesian graphical model for fusing disparate types

of count data. The motivating application is the study of bacterial communities

from diverse high-dimensional features. We introduce a flexible multinomial-

Gaussian generative model for jointly modeling such count data. We present a

computationally scalable variational Expectation-Maximization (EM) algorithm for

inferring the latent variables and the parameters of the model. The inferred latent

variables provide a common dimensionality reduction for visualizing the data. In

addition to simulation studies that demonstrate the variational EM procedure, we

apply our model to a bacterial microbiome dataset.

Chapter IV proposes a hierarchical Bayesian multitask learning model that is

applicable to the general multitask binary classification learning problem where

the model assumes a shared sparsity structure across different tasks. We derive

a computational efficient inference algorithm based on variational inference to

approximate the posterior distribution. We demonstrate promises of the new

approach on multiple synthetic datasets and a real world microbiome dataset in

comparison with other benchmark methods.

Chapter V introduces an exact model with minimal assumptions for the transi-

tion matrix recovery problem, where we are given multiple two-way contingency

tables with known margin sums but missing inner cells. We propose three valid

approximations of the exact model and a novel Riemannian gradient algorithm to

obtain the Maximum Likelihood Estimators (MLE) of the transition matrix. The

proposed methods are applied to a synthetic dataset and a real world dataset

from the New Zealand general election. Our simulation studies show the scope

when those approximations apply. A further clustering analysis using the esti-

xvi



mated stochastic matrices across different electorate districts is able to identify

communities that are reflective of the demographics of New Zealand.

xvii



CHAPTER I

Introduction

With recent advances in science and technology, researchers are often provided

with unprecedented amounts of complex data to analyze. The structure of the data,

due to being high dimensional, discrete, incomplete, extrapolating meaningful

information from these data requires models that incorporate knowledge about

the underlying systems and implement efficient computation methods. In this

thesis, we have developed statistical models and inference algorithms (using

Monte Carlo methods and optimization methods) comprehensively undertaken

their performance analysis for several complex problem domains. These domains

include: inverse problems in radiation detection; data fusion and classification in

high dimensional microbiome studies; and contingency table analysis for inferring

voting patterns in election polling data with missing information.

1.1 Statistical Modeling for Complex Systems

A general systems perspective provides context for the research presented in

this thesis. In the study of traditional physical systems, once we have a complete

characterization of the governing equations of the system, we can predict the

outputs of the system given the initial states or inputs of the system. This task is

1
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called a forward problem, and can be visualized abstractly in Fig. 1.1:

Figure 1.1: General Input-Output System

In contrast, the process of using knowledge about the system to determine the

input associated with a given output is called an inverse problem [1]. This problem

arises in applications where the experimenter only has access to measurements

of the output and wishes to infer the input, or some specified properties of

the input. For example, in nuclear radiation detection and identification that

is treated in Chapter II, it may be of interest to discriminate between possible

isotopes that generated the neutrons, the neutron source. The objective could be

to classify the source as benign, e.g. trace medical isotopes such as Technitium

99m or Iodine 131, or suspiciious, e.g. a special nuclear material (SNM) containing

fissionable isotopes like uranium-233, uranium-235, or plutonium-239, introduced

with malicious intent. The neutron energy spectrum provides the key discriminant

for deciding between benign vs malicious sources, and the detector has a system

transfer function that translates the unobserved spectrum of an incident neutron

at its input to the observed burst of light at the output. The neutron spectrum can

only be extracted through deconvolution of the measured light output spectrum

and the response functions of the detector to monoenergetic neutrons. Due to

attenuation, scattering, and background noise, it is necessary to use all available

information about the system in order to accurately recover the neutron spectrum.
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To counter this loss of information, in Chapter II we adopt a Bayesian perspective

of this inverse problem that introduces Bayesian priors in order to incorporate

prior knowledge about the inputs into the inference [2].

Data fusion, where the same inputs are measured by different systems (e.g

sensors), is the integrative process of aggregating and synthesizing information

about the input across multiple sources. This process is applicable to problems

where data from multiple sensors are readily available and each sensor only

measures partial information about the inputs. For example, when studying

microbial systems, one may aim to quantify how changes in environmental con-

ditions affect microbial community profiles, with the goal of developing sensors

based on these biotic indicators. A common way to obtain a global profile of

a microbial community is to perform gene sequencing on a biological sample.

In particular, RNA-Seq measures gene expression in a community by quantify-

ing the number of times each gene transcript occurs in the pool of sequenced

RNAs. Each microbial species in the community is represented by its own unique

set of transcripts, i.e., its transcriptome, and fusing information from different

transcriptomes yields the global profile of gene expression across all species in

the community. This type of analysis is known as metatranscriptomics. Chapter

III introduces a Bayesian graphical model for the metatranscriptomics problem

to capture patterns of similarity between histograms of different species’ gene

expression without inter-species genome-to-genome mappings nor knowledge of

inter-species transcriptomic pathway correspondences in reflection of condition

changes.

In Multitask learning, observations of multiple inputs and outputs of related
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systems (tasks) are observed, and the goal is to infer the unknown systems for

future predictive tasks. This framework arises in applications where we have

limited number of input-output pairs for each system. For example, in the study of

human gut microbiomes, it may be of interest to perform health prediction based

on human gut data. However, microbiome data presents two major challenges.

First typical microbiome data lies in high feature dimension, i.e the number of

microbes is significantly more than the number of samples available. Second, in

health applications it is essential that machine learning models be interpretable

and quantify uncertainty in their predictions. To address these challenges, in

Chapter IV we deploy a Bayesian multitask learning framework with variational

approximations to perform predictions jointly on multiple datasets, applying to

gut microbiome prediction of health outcomes.

In Chapter V, we formulate the transition matrix recovery problem as estima-

tion of a stochastic matrix of conditional probabilities from multiple experiments,

where we are given multiple two-way contingency tables with known margin

sums but missing inner cells. In this problem the margin sums of two categories

of the contingency tables are the input-output pairs of the system governed by the

transition matrix, and we are interested in recover the conditional probabilities

that describes the system. This problem arises when data are only available at

the population level instead of individual level due to either limitations of the

measurements or privacy constraints. For example, in political science, exit polls

often collect information on how voters voted in an election. They may also ask

the voter how she voted in the last election or what party affiliations were held

by the candidates she voted for in a multi-category election, e.g., an election for
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state legislature, federal congress, and presidential candidates. Exit poll voting

data is often separately aggregated according to electoral districts and individual

level voter-specific cross-tabulated data may not be reported. In this case only

marginal data per district is available and the results in Chapter V can be applied

to recover the conditional probability (transition) matrices associated with voter

choices across the election categories.

1.2 Outline and Contributions

This section lists the chapters and corresponding contributions in this thesis.

Each chapter aims to be a self contained exposition on a specific topic.

Chapter II describes a hierarchical Bayesian model and state-of-art Monte

Carlo sampling method to solve the unfolding problem, i.e., to estimate the

spectrum of an unknown neutron source from the data detected by an organic

scintillator. The proposed approach is compared to three existing methods using

simulated data to enable controlled benchmarks. We consider three sets of detector

responses. One set corresponds to a 2.5 MeV monoenergetic neutron source and

two sets are associated with (energy-wise) continuous neutron sources (252Cf

and 241AmBe). Our results show that the proposed method has similar or better

unfolding performance compared to other iterative or Tikhonov regularization-

based approaches in terms of accuracy and robustness against limited detection

events, while requiring less user supervision. The proposed method also provides

a posteriori confidence measures, which offers additional information regarding

the uncertainty of the measurements and the extracted information. This chapter

is based on the work of [3] that was published in IEEE Transactions on Nuclear

Science.
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Chapter III 1 develops a Bayesian graphical model for fusing disparate types of

count data. The motivating application is the study of bacterial communities from

diverse high-dimensional features. We introduce a flexible multinomial-Gaussian

generative model for jointly modeling such count data. This latent variable

model jointly characterizes the observed data through a common multivariate

Gaussian latent space that parameterizes the set of multinomial probabilities of

the transcriptome counts. The covariance matrix of the latent variables induces

a covariance matrix of co-dependencies between all the transcripts, effectively

fusing multiple data sources. We present a computationally scalable variational

Expectation-Maximization (EM) algorithm for inferring the latent variables and

the parameters of the model. The inferred latent variables provide a common

dimensionality reduction for visualizing the data and the inferred parameters

provide a predictive posterior distribution. In addition to simulation studies that

demonstrate the variational EM procedure, we apply our model to a bacterial

microbiome dataset. This chapter is based on the work of [4] that is going to be

published in IEEE Transactions on Signal Processing.

Chapter IV 2 proposes a hierarchical Bayesian multitask learning model that is

applicable to the general multitask binary classification learning problem where

the model assumes a shared sparsity structure across different tasks. We derive

a computational efficient inference algorithm based on variational inference to

approximate the posterior distribution. We demonstrate promises of the new ap-

proach on multiple synthetic datasets and a real world microbiome dataset pooled

from multiple distinct studies in comparison with other benchmark methods.
1This work was partially supported by grants from ARO W911NF-19-102 and DOE DE-NA0003921.
2This work was partially supported by the U.S. Department of Energy by Lawrence Livermore National Laboratory

under Contract DE-AC52-07NA27344 with IM release number LLNL-MI-853606. It was also partially supported by the US
Army Research Office under grant number W911NF1910269.
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Our results in synthetic datasets show that the proposed approach has superior

support recovery property when the underlying regression coefficients share a

common sparsity structure across different tasks. Though our experiments on

real world dataset do not show improvement of the proposed model in terms

of prediction metrics due to the pooled datasets are heterogeneous (i.e different

experimental objectives, laboratory setups, sequencing equipments, patient de-

mographics etc.), we demonstrate the utility of the method to extract informative

taxons while providing well-calibrated predictions with uncertainty quantification.

Chapter V introduces an exact model with minimal assumptions for the transi-

tion matrix recovery problem, where we are given multiple two-way contingency

tables with known margin sums but missing inner cells. We propose three valid

approximations of the exact model and a novel Riemannian gradient algorithm

with Polyak adaptive step size to obtain the Maximum Likelihood Estimators

(MLE) of the transition matrix. The proposed methods are applied to a syn-

thetic dataset and a real world dataset from the New Zealand general election.

Our simulation studies show the scope when those approximations apply. A

further clustering analysis using the estimated stochastic matrices across differ-

ent electorate districts is able to identify communities that are reflective of the

demographics of New Zealand.



CHAPTER II

A Hierarchical Bayesian Approach to Neutron Spectrum
Unfolding with Organic Scintillators

2.1 Introduction

Two main reactions are exploited in neutron detection: scattering on a light

nucleus or capture on elements such as 6Li, 10B or 3He. Thermal neutrons (0.025

eV) are preferentially detected via capture reactions because the aforementioned

elements exhibit high cross-sections for thermal neutron absorption. Conversely,

fast neutrons are detected via scattering reactions on light elements, such as

hydrogen and deuterium. The detection of fast neutrons, such as those emitted

by SNMs, involves directly exploiting inelastic and elastic scattering reactions,

without the need to moderate the source neutrons. Organic scintillators are

typically hydrocarbon compounds and detect neutrons via elastic and inelastic

scattering reactions on hydrogen nuclei. The energy deposited by scattered proton

recoils depends on the scattering angle and it ranges from zero up to the neutron

maximum energy. The intensity of light pulses produced by the scintillator is

correlated to the energy deposited by the recoil protons [5]. This light production

mechanism allows partial retention of the energy of the impinging neutrons,

however, the correlation between the energy of the impinging neutron and the

8
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light pulse produced is weak, and therefore deriving the neutron spectrum from

the measured data is particularly challenging.

Finding the energy spectrum of the neutrons impinging on an organic scintil-

lator from its light output response is an ill-posed problem, which often admits

multiple solutions [6]. This problem is traditionally addressed using so-called

unfolding algorithms, which aim at recovering the spectrum that is most likely to

have produced the given measured response. Accurate unfolding and spectrom-

etry are critical in several applications, such as radiation protection [7], nuclear

physics [8], nonproliferation [9] and safeguards [10]. In safeguards, nonprolif-

eration, and decommissioning applications, accurately discriminating between

different neutron sources, such as those based on (alpha, n) reactions and those

based on fission, would be a valuable tool when characterizing neutron-emitting

samples of unknown composition.

2.2 Background

2.2.1 Organic Scintillator Response and Monte Carlo Simulation

Scintillators emit light upon interaction with ionizing radiation. Organic

scintillators are compounds of hydrogen and carbon, and are suitable to detect

fast neutrons. Neutron elastic scatter on a hydrogen nucleus produces a scattered

neutron and a recoil proton. In the energy range of interest (< 20 MeV neutrons),

it can be assumed that the recoil proton deposits all its energy within a detector of

practical size, e.g. 7.62-cm diam. by 7.62-cm length. The light output response is

approximately linear with the energy deposited by electrons, Ee, with energy above

approximately 40 keV [11]. Therefore, the detector light output is conveniently

expressed in terms of electron light output (ee: electron-equivalent units). In
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practice, the upper edge of the known Compton electron distribution produced

by a monoenergetic gamma-ray source, e.g. 137Cs, provides a suitable calibration

point, commonly referred to as the Compton edge, VCE. The light output in

electron equivalent units (yee) is therefore calculated at any pulse height voltage

V as in Eqn. (2.1).

(2.1) yee =
Ēee

VCE
V.

In equation (2.1), Ēee is the maximum energy deposited by a Compton-recoil

electron, in electron-equivalent energy units. Conversely, the light output response

to charged particles heavier than electrons, like neutron-produced recoil protons,

is not linear with the energy deposited. Throughout this paper, y identifies the

light output in electron-equivalent energy units, e.g., keVee. A widely accepted set

of models which semi-empirically describes the dependence of the light output y

with the proton energy deposited Ep and the energy deposited-per-unit-length

dEp/dx was first introduced by Birks [5] and is reported in Eqn. (2.2) below

(2.2) y(E′p) =
∫ E′p

0

S dEp

(1 + kB dEp/dx)
.

Equation (2.2) is the integral over energy of Eqn. (3) in the paper by Brooks et al.

[12]. In Eqn. (2.2), S is the scintillation efficiency, in MeVee, and kB is a material-

dependent constant, in g/MeVcm2 , often referred to as the Birks’ coefficient [12].

We simulated the pulse height distributions, i.e. light output spectra, of a 7.62-cm

diam by 7.62 length EJ-309 detector in response to monoenergetic neutrons, for

500 evenly distributed neutron sources with energy between 0.1 MeV to 20 MeV,

using MCNPX-PoliMi [13]. We used MPPost, a MCNPX-PoliMi post-processing

code, to obtain the light output spectrum , i.e. the frequency of occurrence of
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pulse amplitudes in a given measurement time [14]. An enhanced version of

MPPost allows the use of the semi-empirical model in equation (2.2) to generate

the detector-specific light output spectrum [15]. For EJ-309, the coefficients S

and kB that we used are 2.277 MeVee/MeV and 33.84 g/MeV cm2, respectively

[15]. The software also applies a Gaussian smear to account for the detector’s

energy resolution. The energy resolution function that we implemented was

measured by Enqvist et al. [16] for the type of detector under investigation and

is reported in Eqn. (2.3), where a = 0.113± 0.007, b = 0.065± 0.011MeV2, and

c = 0.060± 0.005MeV.

(2.3) (∆E/E) = (
√

a2 + b2/E + (c/E)2)

Fig. 2.1 shows the simulated light output spectra produced by irradiation with

selected mono-energetic neutron sources between 0.5 MeV and 5 MeV.

The energy deposited in the detector by recoil protons Ep after elastic collision

with neutrons of energy E depends on the scattering angle of the charged recoil

in the laboratory system of reference: θ (see Eqn. (2.4)).

(2.4) Ep =
4A

(1 + A)2 cos2θ E

In the elastic scattering kinematics equation (Eqn. (2.4)), A is the mass number

of the target nucleus (A=1 for 1H). Monoenergetic neutrons can thus produce

proton recoils in the energy range from Epmax = E, when θ = 0, to zero, when

θ = π
2 and consequently light pulses with amplitude ranging form y(Epmax) to

0. Note that in Fig. 2.1, the light output corresponding to the maximum energy

deposited by proton recoils is identified by solid diamonds. We determined this
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Figure 2.1: Simulated Response Functions for a 7.26 cm diam. by 7.26 cm length EJ-309 detector in
response to monoenergetic neutrons in the 0.5-5 MeV range. Tshe solid diamonds show the light
output corresponding to the maximum energy deposited.

light-output value as the minimum of the derivative of the upper edge of the

light output spectrum, following the same method proposed by Kornilov and

colleagues [17].

As in any spectroscopy-capable sensor, the number of counts at a given bin

of the light output spectrum y(E′) (E′ in ee) is given by the convolution of the

detector response at that light output bin with the impinging neutron spectrum,

as formalized in the next section (Eqn. (2.5)). Fig. 2.2 shows the process of

spectrum unfolding for two monoenergetic neutron spectra on discretized data

sets. One may notice that an ideal monoenergetic neutron spectrum is a linear

transformation of one element of the canonical basis for the response matrix and
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Figure 2.2: Example of the convolution between an ideal neutron spectrum with two energy peaks
and the detector response matrix.

therefore selects only one corresponding light output response, i.e. column of

the response matrix. For organic scintillation detectors, the number of neutron

energy bins (N) is of the same order of magnitude as the number of light-output

channels measured (M). In neutron spectroscopy, this case is usually referred to as

multi-channel unfolding, as opposed to few-channel unfolding, where M << N.

Few-channel unfolding applies to other types of detectors, e.g. Bonner spheres

[18] and superheated emulsions [19]. The size of the response matrix used in

this chapter is 600× 149 (i.e., M = 600 and N = 149). These channel numbers

correspond to a light output bin width of 0.001 MeVee, in the 0.01-6 MeVee light-

output range, and a neutron energy bin width of 100 keV, in the 0.1-15 MeV energy

range.
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2.2.2 Discretized observation model

The detector response function is denoted by R(E′, E). More precisely, R(E′, E0)

is the light output spectrum (with E′ in eVee) in response to a monoenergetic

neutron of energy E0. The light output and unknown neutron energy spectral

fluence, i.e. the number of neutrons per unit area [20], also referred to as neutron

spectra throughout this paper, are related through the following Fredholm integral

equation [21, 22, 23, 24, 25]

(2.5) y(E′) =
∫ ∞

0
R(E′, E)ϕ(E)dE.

For numerical computation, Eqn. (2.5) can be approximated by the following

linear equation

(2.6) y ≈ Rϕ,

where ϕ = [ϕ1, . . . , ϕN]
T ∈ RN

+ denotes the neutron spectrum discretized over N

energy bins, y = [y1, . . . , yM]T ∈ RM
+ is light output spectrum discretized over M

bins and R is the M× N response matrix of the detector. Unfolding methods aim

at recovering ϕ from y such that Eqn. (2.6) is satisfied. However, they can differ

by the similarity measures or likelihood functions used to compare y and Rϕ.

A classical approach to matching y and Rϕ consists of considering a quadratic

similarity measure

||y− Rϕ||2Σ = (y− Rϕ)TΣ−1(y− Rϕ),(2.7)

where the M×M matrix Σ relates to the characteristic of the measurement noise.

If Σ is set to the identity matrix, Eqn. (2.7) reduces to the classical least-squares

criterion ||y− Rϕ||22 where || · ||2 denotes the standard ℓ2 norm. Recovering ϕ
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using the criterion in Eqn. (2.7) implicitly assumes that y is a noisy version of Rϕ

corrupted by Gaussian noise with covariance matrix (proportional to) Σ, i.e.,

y|ϕ ∼ N (Rϕ, Σ) ,(2.8)

where y|ϕ reads ”y given ϕ”, ∼ reads ”is distributed according to” and N (m, Σ)

denotes the multivariate Gaussian distribution with mean m and covariance matrix

Σ. Indeed, it can be easily shown that minimizing (2.7) with respect to (w.r.t.) ϕ

is equivalent to maximizing the likelihood (2.8) w.r.t. ϕ, as will be discussed in

the next section.

Since the acquisition process consists of detecting individual neutrons (discrete

number of events within a given time period), it is reasonable to consider Poisson

noise models. These models enable the consideration of the correlation between

the mean (expected) detection rates and the variance of the observation noise.

Moreover, such models are more suited for low counts (e.g. less than 10 per bin),

as investigated in Section 2.4 where we consider scenarios with as few as 1 count

per light output bin on average. The classical Poisson noise model assumes that

the light output in the M energy bins are mutually independent and Poisson

distributed. The resulting observation model becomes [26]

y|ϕ ∼ P (Rϕ) ,(2.9)

where P (·) denotes the element-wise Poisson distribution, i.e., ∀m, ym|ϕ ∼

P (rm,:ϕ) with rm,: the mth row of R. Consequently, the likelihood of the observed

light output spectrum y given the underlying neutron spectrum ϕ, denoted

f (y|ϕ) can be expressed as

f (y|ϕ) =
M

∏
m=1

(rm,:ϕ)ym

ym!
exp [−rm,:ϕ] .(2.10)
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In this subsection, we have discussed how the unfolding problem can be

formulated as a linear inverse problem and discussed two main noise observa-

tion models. In the next subsection, we review the primary existing unfolding

methods and their relation with the observation models discussed above. These

methods will then be used in Section 2.4 to assess the performance of the proposed

approach.

2.2.3 Existing unfolding approaches

The first statistical approach to unfolding is a classical method for inverse

problems and is referred to as Maximum Likelihood Estimation (MLE). MLE-

based unfolding recovers the neutron spectrum by finding ϕ that maximizes

the likelihood function [27]. Maximizing the likelihood f (y|ϕ) is equivalent to

minimizing the negative log-likelihood, (which is often preferred for algorithmic

stability since − log ( f (y|ϕ)) is often a (nearly) quadratic function). Although we

can consider as many MLE-based algorithms as likelihood models, we primarily

focus on Gaussian and Poisson noise models here. More precisely, using an

isotropic Gaussian noise model is equivalent to using a classical minimization

of least square loss, while the Poisson model is preferred for counting data as

discussed above. Under Poisson noise assumption, the log-likelihood reduces to

log( f (y|ϕ))

=
M

∑
m=1

ym log(rm,:ϕ)− log (ym!)− (rm,:ϕ) .(2.11)

Maximum likelihood estimation aims at recovering the unknown spectrum

from the data only, i.e., without additional information), by inverting (or pseudo

inverting) the response matrix and using a cost function accounting for the

statistical properties on the observation noise. This is a simple inference strategy
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but can provide poor results in the presence of noise, especially when the response

matrix is ill-conditioned (as it is often the case in practice). Thus, maximum

penalized likelihood estimation methods based on Poisson likelihood models

have been proposed. Since we expect most of the unknown neutron spectra to

be recovered are relatively smooth, it makes sense to add a regularization which

reflects this prior belief. Here we chose a regularization term that promotes small

second-order derivative (in the spectral dimension), which results in the following

objective function to be minimized

min
ϕ∈RN

+

M

∑
m=1
− log( f (y|ϕ)) + λ||Lϕ||22,(2.12)

where λ is a tuning parameter that controls the smoothness, log( f (y|ϕ)) is defined

in (2.11) and L denote the discrete Laplace operator, which can be written as

(2.13) L =



−2 1 0 · · · · · · · · · · · · 0

1 −2 1 0
...

0 1 −2 1 . . . ...

... 0 . . . . . . . . . . . . ...

... . . . . . . . . . . . . 0
...

... . . . 1 −2 1 0

... 0 1 −2 1

0 · · · · · · · · · · · · 0 1 −2



.

There are multiple ways of solving the minimization problem in Eqn. (2.12), e.g.,

using Alternating Direction Method of Multipliers (ADMM) [28] as in Poisson

image deconvolution by augmented Lagrangian (PIDAL) (see [29]) or using

sequential Gaussian approximations of the Poisson likelihood [30]. Here, we chose

the ADMM implementation presented in [29] for its simplicity and relatively low
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computational cost. It is worth noting that the One-Step-Late (OSL) algorithm in

[31, 32] is an alternative method to approximate the solution of Eqn. (2.12). Note

that Eqn. (2.12) requires to select an appropriate value of λ, which will affect the

quality of the solution. This point will be further discussed in Section 2.4.

Under the Gaussian noise model, the unfolded spectrum is a solution to the

convex optimization problem as in (2.12) where − log( f (y|ϕ)) is replaced with

the standard quadratic loss function ||y− Rϕ||22. The non-negativity constraints

imposed on the unfolded spectrum prevent us from having a closed form solution,

thus we applied an ADMM algorithm with L-curve method [33] to obtain the

unfolded spectrum. This algorithm will be referred to Tik (Tikhonov Regularizer)

in remainder of the paper.

Among the methods whose codes are available, we also used GRAVEL pre-

sented in [34, 35]. The iterative update rule of GRAVEL algorithm (at iteration

(k + 1)) is given by

(2.14) ϕ
(k+1)
n = ϕ

(k)
n exp

∑m W(k)
n,m log

(
ym

rm,:ϕ(k)

)
∑m W(k)

nm

 , ∀n,

where ϕ(k) is estimated neutron spectrum at iteration k, σm is an estimate of

measurement error in the mth light output bin, rm,n = [R]m,n and

W(k)
n,m =

rm,nϕ
(k)
n

∑i

(
rm,iϕ

(k)
i

) y2
m

σ2
m

(2.15)

GRAVEL allows the user to incorporate prior information, when available, as

an a priori known default spectrum. We have used a flat spectrum for consistency

with the other methods. Regardless of the type of source, a flat initial spectrum

was used, whose boundaries are detailed in Table 2.1. The spectrum intensity

had a negligible impact on the final results. The boundaries of the light output
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spectra are reported in Table 2.1 and vary according to the simulated data. Light-

output bins with a relative statistical error higher than 20% in the high-energy

tail of the light output spectra were excluded. The uncertainty associated with

the simulated bins was calculated as the square root of the counts. GRAVEL

stopping criterion is either the user-defined chi-squared per degree of freedom

(PDF) or the input maximum number of iterations (to stop the algorithm after

a given number of iterations if the first criterion is not satisfied yet) [36]. In our

case, the number of degrees of freedom is M and the chi-squared-PDF was set

to one, while the maximum number of iterations was 6000. For the 252Cf and

241AmBe spectra (see Section 2.4), the algorithm reached the desired chi-squared

PDF after few iterations (< 20), while the maximum number of iterations criterion

was adopted for the monoenergetic spectrum, for which the relative fluctuation

in the chi-squared PDF was below 0.0004%, after 6000 iterations. The GRAVEL

parameters used in Section 2.4 are reported in Table 2.1.

Table 2.1 Specific parameters and settings used to unfold the neutron spectra in GRAVEL.

Parameters 241AmBe 252Cf 2.5 MeV
LOmin-LOmax (MeVee) 0.05-5.8 0.05-4.2 0.05-0.83

Emin-Emax (MeV) 0.5-15.0 0.5-15.0 0.5-3.0

MAXED is another unfolding computer program available within the UMG

package [37]. MAXED applies the maximum entropy principle to the deconvolu-

tion of spectrometer data. The obtained results were similar to those calculated

using GRAVEL, therefore MAXED was not included as an additional comparison

methods.
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2.3 Hierarchical Bayesian spectrum unfolding

2.3.1 Proposed Model

Bayesian methods have been previously proposed [21, 23, 26, 38, 39] in the

context of spectrum unfolding. As mentioned earlier, they aim at regularizing

ill-posed problems by incorporating a-priori information about ϕ in a principled

way. More precisely, such knowledge is incorporated through a so-called prior

distribution f (ϕ|δ), parameterized by δ. The selection of the prior distribution

f (ϕ|δ) is guided by the amount of prior information available and the induced

algorithm complexity [26]. Moreover, the choice of this distribution can be

crucial when the amount of information contained in the data in limited, e.g.,

in the presence of few observations and noisy data. While informative prior

distributions will greatly improve the estimation performance if appropriately

tailored, they will negatively impact the estimation performance if the data

deviates from the the prior belief. In previous studies [21, 23], empirical Bayes

methods were used, in which the prior distribution was built from previously

acquired data. However, such methods perform poorly if the neutron spectrum to

be recovered is not in agreement with the data-driven prior distribution. Bayes’

theorem provides a formal way to combine our prior belief f (ϕ|δ) with the

observations (through the likelihood f (y|ϕ)) to obtain and exploit f (ϕ|y, δ). This

so-called posterior distribution is classically exploited using summary statistics,

including various Bayesian point estimators such as the widely used maximum a

posterior (MAP) estimator [21, 23] (which can also be seen as maximum penalized

likelihood estimation) and posterior means (as in [26]) and a posteriori measures

of uncertainty (e.g., confidence regions). However, the posterior distribution (e.g.
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its mode or mean) can highly depend on the value of δ. A classical approach thus

consists of incorporating this parameter in the estimation process by extending

the Bayesian model and designing an additional prior distribution f (θ). Applying

the Bayes’ rule to that model leads to

(2.16) f (ϕ, δ|y) = f (y|ϕ) f (ϕ|δ) f (δ)
f (y)

∝ f (y|ϕ) f (ϕ|δ) f (δ),

where the posterior distribution f (ϕ, δ|y) summarizes the complete information

available about (ϕ, δ), having observed y.

In a similar fashion to the penalized likelihood method in (2.12), we choose

to assume that the unknown neutron spectrum to be recovered presents smooth

variations across neighboring energy bins. This is achieved by assigning ϕ a

truncated multivariate Gaussian distribution

ϕ|δ ∼ NR+(0, δΣ),(2.17)

to ensure the non-negativity of ϕ. In this chapter, we chose Σ−1 = LT L, where

L is defined as in (2.13) and the overall amount of smoothness of the solution is

governed by the parameter δ (in a similar fashion to λ in the ADMM algorithm).

The smaller δ, the smoother the solution. Note that if δ is fixed (which is not the

case here), the solution of PIDAL is obtained using MAP estimation.

As shown in Eqn. (2.16), we do not choose a fixed value of δ but assigned to it

an inverse-gamma conjugate prior distribution, i.e., δ ∼ IG(α1, α2) with (α1, α2)

fixed and selected based on WAIC (Watanabe-Akaike Information Criteria) [40].

Since in practice N is large, f (ϕ|δ) dominates f (δ) (as noted in Chapter 4 of [41])

and the prior distribution f (δ) has a limited impact on the estimated neutron

spectrum. Moreover, as will be shown in the next paragraph, the conjugacy

between f (ϕ|δ) and f (δ) will also simplify the estimation procedure.
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2.3.2 Inference

To exploit the posterior distribution f (ϕ, δ|y), in this chapter we apply a

Markov chain Monte Carlo (MCMC) method which consists of generating random

variables distributed according to f (ϕ, δ|y). The generated samples are then used

to approximate the posterior mean of ϕ and associated a posteriori uncertainty

intervals. The pseudo-code of the proposed method is summarized in Algo. 1.

The proposed approach is similar to the work in [38] in the sense that we are

also using MCMC methods to solve the unfolding problem. However, several

important differences can be highlighted. First, as in [38], we estimate the regu-

larization parameters δ, but this is achieved here through a hierarchical Bayesian

model (prior distribution assigned to δ) which yields a more computationally

efficient algorithm (fewer iterations required) while this parameter is estimated

via maximum marginal likelihood estimation in [38]. This approach allows us

to also account for the fact that δ is unknown and the additional uncertainty is

automatically included when computing confidence regions for ϕ. Second, here

we use a constrained Hamiltonian Monte Carlo methods (as discussed below)

which improves the sampler convergence and mixing properties compared to

traditional sequential Gibbs updates and random walk-based Metropolis-Hastings

updates (as in [38]).

Algorithm 1

HMC unfolding algorithms

Fixed input parameters: (α1, α2), σ2, number of burn-in iterations Nbi, total number of iterations Niter.
Initialization (k = 0)
Set ϕ(0) = 1, δ(0) = α2/(1 + α1)
for k = 1, . . . Niter do

Sample ϕ(k) ∼ f (ϕ|y, δ(k)) using HMC
Sample δ(k) ∼ f (δ|y, ϕ(k)) from (2.18)

end for
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Set ϕ̂ = 1/(Niter − Nbi)∑Niter
k=Nbi+1 ϕ(k)

Sampling from f (ϕ, δ|y) is achieved by sampling iteratively from f (ϕ|y, δ)

and f (δ|y, ϕ) (lines 5 and 6 of Algo. 1). It can be easily shown using f (δ|y, ϕ) ∝

f (ϕ|δ) f (δ) that

δ|(y, ϕ) ∼ IG
(

N
2
+ α1,

ϕTΣ−1ϕ

2
+ α2

)
,(2.18)

which is straightforward to sample from. The conditional distribution f (ϕ|y, δ) is

a non-standard distribution and accept/reject procedures are required to update ϕ.

Due to the potentially large dimensionality of ϕ (large number N of bins) and the

high correlation between these variables, we resort to a constrained Hamiltonian

Monte Carlo (HMC) update which uses the local curvature of the distribution

f (ϕ|y, δ) to propose candidates in regions of high probability. This approach

allows better mixing properties than more standard random walk alternative

strategies. The interested reader is invited to consult [42] for additional details

about Hamiltonian Monte Carlo sampling and [43] for an example of application

to linear inverse problems involving Poisson noise. The marginal posterior mean

ϕ̂ is approximated by averaging the generated variables after having removed

the first Nbi iterations of the sampler which correspond to the burn-in period

of the sampler. Similarly, the marginal 95% credible interval for each ϕn is

computed from the generated samples {ϕ(k)
n }k. The duration of the transient

period Nbi and the total number of iterations Niter are set by visual inspection

of the chains from preliminary runs. These values are then kept unchanged

throughout all the experiments. Note that as mentioned above, by embedding δ

in the Bayesian model through f (δ) and sampling from f (ϕ, δ|y), the posterior

mean and confidence regions already account for the fact that δ is unknown (they
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are computed according to f (ϕ|y)). For completeness, the main parameters of

the TiK, PIDAL, and MCMC algorithms are summarized in Table 2.2 below, while

the settings used for the three different sources in GRAVEL have been already

introduced in Table 2.1.

Table 2.2 Parameters and settings used to unfold the neutron spectra.

Method Nb. of parameters Parameters Value(s)
Tik 1 λ L-curve [33]

PIDAL 1 λ user-defined
MCMC 2 (α1, α2) using [40]

2.4 Unfolding Results and Discussion

We assess the performance of proposed algorithm (referred to as MCMC in the

remainder of the paper) with GRAVEL [34, 36, 44], Tik (Tikhonov regularization

with L-curve method) [33] and PIDAL [29] applied to simulated neutron sources.

We consider three sources: 2.5 MeV monoenergetic neutron source, 252Cf and

241AmBe. The data simulation has been performed using the Monte Carlo method

detailed in Section 2.2.1 that takes into account the physical process of light output

detection with a total number of 5.107 detection events, and we use the semi-

empirical response matrix described in Section 2.2.1 to unfold the measured light

output. In the following experiments, we use the precision matrix Σ−1 = LT L as

discussed in Section 2.3 for the MCMC algorithm and Tik to be consistent with

the PIDAL algorithm. In this paper, we select the optimal (in the sense of the

performance measure in Eqn. (2.19)) smoothing parameter of PIDAL based on

the ground truth, and the resulting method is denoted as PIDAL-O, which stands

for oracle PIDAL, in the sense that this approach uses the value of the smoothing



25

parameter which gives the best reconstruction performance, which is in practice

impossible to obtain without knowing the spectrum to be recovered. This method

assumes access to the ground truth spectra, so it can be seen as the optimal MAP

estimator and serves as a way to evaluate the difficulty of the unfolding problem.

Figure 2.3: Examples of unfolded spectra of the simulated 2.5 MeV monoenergetic neutron
source (5.107 detection events per light output spectrum). MCMC provides additional uncertainty
evaluation through credible intervals (CIs), defined here as the high density regions that contain
95% of the samples drawn from the full posterior distribution (leaving 2.5% on each side). Note
PIDAL-O (PIDAL-Oracle) assumes full knowledge about ground truth spectra, so it serves as an
estimate of the optimal unfolding algorithm and it is not attainable in actual experimental settings.

Fig. 2.3 shows the unfolded spectra obtained by Tik, GRAVEL, PIDAL-O and

MCMC for the simulated 2.5 MeV monoenergetic neutron source. All methods are

able to identify the intensity of the peak. MCMC provides additional uncertainty
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quantification tools through a posteriori Credible Interval (CI). Here we used a

95% CI corresponding to the high density region that contains 95% of the samples

drawn from the full posterior distribution (leaving 2.5% on each side). MCMC

identifies a false peak in the lower energy region within which the response matrix

is particularly ill-conditioned. This is reflected by the broad posterior confidence

region (light blue region) around the posterior mean spectrum. This result is

expected since Tik, PIDAL-O and MCMC all impose additional smoothness

constraints on the spectrum.

Figs. 2.4 and 2.5 depict the unfolded spectra for the two continuous source

(252Cf and 241AmBe). Tik, GRAVEL, PIDAL-O and MCMC all show strong agree-

ment with the ground truth spectrum. In addition, the credible intervals provided

by the MCMC algorithm provides additional evidence about regions with higher

uncertainty. Fig. 2.6 shows the relative error associated with the unfolded spectra

with respect to ground truth for the 241AmBe source. Fig. 2.7 shows the light

output obtained as the convolution between the unfolded spectra and the response

matrix compared to the ground truth light output. The four methods show very

good agreement with the ground truth. This result illustrates one of the main

challenges of the neutron unfolding problem, where several different unfolded

spectra can lead to similar fits to the data to be deconvolved. Note that the

relative error plots and generated light output plots for 252Cf lead to the same

conclusions as those presented using 241AmBe, thus they are omitted here to

reduce redundancy.

We use the Spectral Angle Mapper (SAM) [45] between the unfolded spectrum

(ϕ̂) and the known ground truth (ϕ) to quantify the unfolding performance of
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Figure 2.4: Examples of unfolded spectra of the simulated 241AmBe neutron source (5.107 detection
events per light output spectrum).

the different methods. Because the ground truth neutron spectra and response

matrix have different neutron energy resolutions, we adopted SAM as opposed to

standard Mean Square Error (MSE) as SAM is scale-invariant. Indeed, the SAM

criterion relies on the spectral angle between ϕ and ϕ̂, which is small when ϕ and

ϕ̂ present similar shapes. As a result, similar spectra lead to values of SAM close

to 0. The energy bounds listed in Table 1 were applied to the GRAVEL unfolded

spectra to calculate the SAM.

SAM(ϕ, ϕ̂) = arccos
(

ϕTϕ̂

||ϕ||2||ϕ̂||2

)
.(2.19)

Table 2.3 summarizes all the SAMs which appear to be in agreement with the
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Figure 2.5: Examples of unfolded spectra of the simulated 252Cf neutron source (5.107 detection
events per light output spectrum).

qualitative results as shown in Figs. 2.3 to 2.5. Notably, MCMC, PIDAL and Tik

all provided the competitive results based on SAM for the two continuous source,

but MCMC automatically estimates the amount of regularization required from

the data with additional credible interval.

Table 2.3 Spectral Angle Mapper (degrees) obtained using the different unfolding methods for the
three sources (5.107 detection events per light output spectrum). Note PIDAL-O (PIDAL-Oracle)
assumes full knowledge about ground truth spectra, so it serves as an estimate of the difficulty of
the unfolding problem and it is not attainable in actual experimental settings

Neutron Source
Method

Tik GRAVEL PIDAL-O MCMC

DD 3.54 14.23 3.97 18.75

241 AmBe 6.26 4.6 13.30 6.29 5.13

252C f 2.97 4.73 14.14 3.47 2.69
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Figure 2.6: Relative error plots of unfolded spectra of the simulated 241AmBe neutron source (5.107

detection events per light output spectrum) with respect to the Ground truth. Note PIDAL-O
(PIDAL-Oracle) assumes full knowledge about ground truth spectra, so it serves as an estimate of
the optimal unfolding algorithm and it is not attainable in actual experimental settings.

In safeguards, security, and non-proliferation applications, it is often realistic

to have a weak neutron signal that can be overwhelmed by an intense gamma-ray

background [46]. Therefore, it is of considerable interest to examine the robustness

of the algorithms as the number of detection event decreases (weak source and/or

short integration time). We assess the robustness of the different algorithms using

simulated data of 252Cf and 241AmBe, for event counts ranging from 5× 102 up

to 5× 106. Note that for the most challenging scenarios, e.g., using only 5× 102

total counts across the M = 600 light output bins, the average counts per bin fall

below 1 for both 252Cf and 241AmBe, with 480 empty bins on average for 241AmBe
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Figure 2.7: Examples of light output spectra generated using the unfolded spectra of the simulated
241AmBe neutron source (5.107 detection events per light output spectrum) compared with ground
truth light output. Note PIDAL-O (PIDAL-Oracle) assumes full knowledge about ground truth
spectra, so it serves as an estimate of the optimal unfolding algorithm and it is not attainable in
actual experimental settings

and 520 empty bins for 252Cf. This further motivates the use of the Poisson noise

model in our unfolding procedure. The results are summarized in Fig. 2.6 and

Table 2.4. Note that GRAVEL failed to converge for both sources at numbers of

counts lower than 5× 104, which is denoted as N/A.

As mentioned in Section 2.3, PIDAL can be seen as a special case of the

proposed hierarchical model where the hyperparameter δ is fixed as opposed to

random. With appropriately tuned regularization parameters, Tik, PIDAL and

MCMC demonstrated the competitive robustness against low counts. However,
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the proposed MCMC algorithm automatically adjusts this parameter and does

not require exact knowledge about the ground truth.

Table 2.4 Unfolding performance (average SAM, in degree) as a function of the total number of
detection event (best result per row in bold). Values in brackets represent standard deviations com-
puted over 50 Monte Carlo realizations. Note PIDAL-O (PIDAL-Oracle) assumes full knowledge
about ground truth spectra, so it serves as an estimate to the difficulty of the unfolding problem
and it is not attainable in actual experimental settings.

Neutron Source Counts Tik GRAVEL PIDAL-O MCMC

241 AmBe

5× 106
8.99 (1.96) 14.71 (2.99) 7.47 (0.77) 7.99 (0.29)

5× 105
9.87 (0.46) 15.81 (1.90) 8.93 (0.86) 9.89 (0.40)

5× 104
11.84 (0.49) N/A 10.96 (1.24) 12.79 (0.65)

5× 103
15.25 (0.62) N/A 14.64 (1.54) 17.06 (1.11)

5× 102
19.40 (3.75) N/A 17.18 (1.41) 22.04 (2.61)

252C f

5× 106
4.69 (0.45) 14.59 (1.02) 4.54 (0.60) 4.28 (1.12)

5× 105
5.05 (0.84) 15.51 (1.60) 5.78 (0.75) 4.62 (1.06)

5× 104
7.06 (1.11) N/A 7.20 (1.02) 6.33 (1.68)

5× 103
12.25 (1.14) N/A 10.35 (2.03) 10.01 (2.26)

5× 102
16.97 (2.51) N/A 14.57 (3.22) 22.73 (1.96)

In practical applications, systematic errors in the unfolded spectra may arise

because of an inaccurate calibration of the detector or a drift in the operating

conditions, e.g. temperature. In such cases, the presented methods are expected

to exhibit a similar energy bias in the reconstructed spectrum since no strong

prior information is incorporated into the algorithms. The unfolding of a known

monoenergetic spectrum, e.g., from 137Cs, with suitable gamma-ray response

matrix, could be used to mitigate and correct for such systematic errors. We

implemented the Tik, PIDAL-O and the proposed MCMC unfolding algorithm

in Matlab R2017b on an 2GHZ Intel processor with 6GB of RAM. The maximum

number of iteration for Tik and PIDAL are fixed at 24000 but the algorithms

generally converge and are stopped well before this number of iterations. Within

the MCMC algorithm, we generated sequentially 24000 samples (after the burn-in

period of the sampler) for all the simulation results presented in this paper. Tik
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and PIDAL-O calls Tik and PIDAL to search for the best smoothing parameter. The

tuning of hyperparameters of MCMC algorithm is done using WAIC (Watanabe-

Akaike Information Criteria) [40]. We used the compiled version of GRAVEL

available through RSICC (UMG package version 3.3). The average run time of

the algorithms to analyze one spectrum is presented in Table 2.5. As shown in

Table 2.5, the enhanced unfolding performance of the MCMC method comes with

a significantly higher computational cost than Tik, GRAVEL and PIDAL (for a

fixed value of the smoothing parameter) because the sequential nature of the

sampler and the number of iterations required to estimate the posterior mean

and credible intervals. Different choices of parameters for MCMC results in the

significant discrepancy of run time for 241AmBe and 252Cf. In actual experiment,

Tik (with L-curve Method) and PIDAL-O are called 70 times to perform a log

scale search to find the best smoothing parameter prior a full run, while MCMC

are called 6 times to perform a log scale search. However, it is worth noting that

the hyperparameter selection procedure and the algorithm implemented has not

been optimized for fast analysis, and it is possible to accelerate the method using

C/C++ implementations.

Table 2.5 Average computational time to analyze one spectrum (in seconds) over 100 runs. Note
all the reported time here excludes the additional parameter tuning time cost.

Neutron Source
Method

Tik GRAVEL PIDAL MCMC
241 AmBe 0.38 900 0.45 83.39

252C f 0.71 60 0.53 40.42
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2.5 Conclusions

We have proposed a hierarchical Bayesian approach to solve the neutron spec-

trum unfolding problem, which differs from previous work [26, 38] by using an

efficient constrained Hamiltonian Monte Carlo method and a hyper-prior on the

hyper-parameter. The new MCMC algorithm shows improvement in performance

compared to traditional approaches, such as Tik [33], GRAVEL [34, 47, 44] and

PIDAL [29] on simulated data (252Cf and 241AmBe) in terms of accuracy with

additional uncertainty evaluation through credible interval. This chapter further

demonstrates the potential benefits of Bayesian methods for solving unfolding

problems, because they provide a formalized manner in which to integrate exist-

ing prior knowledge within the estimation procedure. In this chapter, we have

focused on synthetic data generated from reference neutron spectra and a known

response matrix (ground truth available). In future work, the performance of

the algorithm will be evaluated using measured data (simulated and measured

response matrices) for organic scintillators. Efforts should in particular concen-

trate on robustness of the methods with respect to detector imperfections and

background/spurious detections. Additional types of detectors with spectroscopic

capability, e.g., Bonner sphere spectrometers, silicon telescopes, and superheated

emulsions will also be investigated. The present unfolding method could also be

coupled to classification algorithms to infer the type and amount of fissile material

in unknown neutron sources, for nonproliferation and safeguarding applications.

Approximate Bayesian methods will also be investigated for robust unfolding

with reduced processing burden.



CHAPTER III

A Graphical Model for Fusing Diverse Microbiome Data

3.1 Introduction

In this chapter we introduce a Bayesian graphical model for joint modeling

and fusing high dimensional count data collected from different sensors with

no explicit correspondences between their feature sets. Our model is relevant

to the many areas of multi-modality fusion where data is collected from diverse

but incommensurate sensor modalities. Examples include multi-view learning

in computer vision and automated language translation in natural language

processing. However, this paper focuses on a particularly timely application: the

fusion of microbiome data from diverse microbial communities.

Microbiomes exist in diverse environments and are critical to sustaining life,

balancing ecosystems, and producing antibiotics, among many other functions.

Microbiomes consist of communities of microbes that interact with each other

to maintain stability and resilience to environmental conditions and microbial

intrusions from competitors. It has therefore been of great scientific interest to

quantify changes in microbiome communities due to changing conditions using

experimental data. For example, one area of study is the rhizosphere, which is a

community of microbial species living around plant root systems, known to be

34



35

sensitive to environmental factors [48]. Another area of study is the spectrum of

responses of microbiomes to stressors, collectively called the microbial exposome

[49].

One of the principal sensing platforms used to study microbiome communities

applies gene sequencing to a microbiome sample, e.g., collected from the gut,

the soil, or other environments. A common way to obtain a global profile of

a microbial community is to perform gene sequencing on a biological sample.

For example, RNA-Seq measures gene expression in a community by quantify-

ing the number of times each gene transcript occurs in the pool of sequenced

RNAs. Each microbial species in the community is represented by its own unique

set of transcripts, i.e., its transcriptome, and fusing information from different

transcriptomes yields the global profile of gene expression across all species in

the community. This type of analysis is known as metatranscriptomics and it

provides a functional profile of the community that can complement the gene

taxonomic profiling provided by metagenomics [50, 51, 52]. The resulting datasets

consists of species abundance (count of RNA occurrences) for different samples

obtained from various communities. This paper introduces a Bayesian graphical

model for the metatranscriptomics problem, and inference is performed using

a scalable variational EM inference method. Notably, our model can capture

patterns of similarity between histograms of different species’ gene expression

without inter-species genome-to-genome mappings or knowledge of inter-species

transcriptomic pathway correspondences.

The main feature of our model is that it estimates the global covariance struc-

ture of gene expression when the observations are in the form of count vectors



36

produced by RNA-SEqn. Correlations between transcript abundances are infor-

mative about the effect of environmental conditions on microbial communities

[53]. In particular, the global covariance matrix captures inter- and intra-species

interactions. For example, the expression of a single gene in a species can influence

other gene expressions in that species or the gene expressions of other community

members. We propose a latent variable graphical model that can capture the

hidden factors underlying such dependencies.

The main assumption underlying our proposed model is the existence of a

hidden low-dimensional continuous latent space that can explain the observed

data. We model the observations as conditionally multinomial distributed given

the latent variables, which are assumed to be multivariate Gaussian with a low-

rank covariance structure. Due to the lack of conjugacy between the Gaussian and

multinomial distributions, exact Bayes inference is not tractable. We, therefore,

adopt a Bayes variational inference approach [54, 55] to develop an algorithm for

estimating the parameters of the proposed model and projecting the data to the

latent space.

The proposed model can be contrasted with previously introduced latent vari-

able models used in multi-view learning and dimensionality reduction. Factor

analysis (FA) [56] is a classical method that is a generalization of Principal Compo-

nent Analysis (PCA) [57] and Probabilistic PCA [58]. FA decomposes the observed

data matrix into a low-dimensional set of factor loadings and factor scores, impos-

ing a low-rank constraint on the covariance matrix. Like our proposed model, the

FA model also assumes a low-dimensional Gaussian latent space but it does not

account for the counting nature of the observed data.
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Several latent variable models have been proposed for counting observations.

These include Latent Semantic Analysis [59], Multinomial PCA [60], and Latent

Dirichlet Allocation (LDA) [61]. LDA is the most closely related model to the

model proposed here since it is also a Bayesian graphical model for count data

and uses multinomial distribution. The main difference is that LDA uses a

Dirichlet-distributed latent space instead of a Gaussian-distributed latent space.

Our Gaussian distributed latent space makes it possible to recover a non-trivial

covariance structure among the count variables, unlike LDA [62, 63].

Another way to capture the covariance structure of the observed variables

is to ignore the counting nature of the data and use Gaussian Markov random

fields (GMRF) [64] to directly estimate the covariance, or Gaussian Graphical

Models (GGM) [65] to enforce sparsity on the inverse of the covariance estimate.

There have been extensions of the GGM to handle multinomial observations

using copulas [66] that have been applied to microbiome analysis [67, 68, 69].

There is also an ongoing effort to extend the GGM to the multiple datasets

settings where there is an assumed common precision matrix across the datasets

[70, 71, 72, 73, 74, 75, 76, 77]. Notably, [78] extends previous optimization-based

approaches to the hierarchical Bayesian setting along with a scalable and efficient

inference method. However, this line of work assumes a common feature space

across multiple datasets, whereas in our case the features are distinct for different

microbial communities.

In the field of computational ecology, there has been a related line of work on

joint species distribution modeling (JSDM) [79, 80, 81] to model multiple related

abundance datasets. The proposed work differs from JSDM mainly in how we
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represent the environmental covariates. In JSDM, the environmental covariates

are used to infer the species abundance through the generalized linear model,

whereas in this chapter we explicitly represent the covariates through latent

variables. With the latter more suitable for applications where the covariates are

discrete descriptors of environments such as the binary case (the presence of a

bacterium that produces koreenceine antibiotics) we are considering in 3.3.2.

Inference in latent variable models, like the one we propose here, can be

challenging. This is especially difficult when there is a lack of conjugacy between

the distributions of the latent variables and the observed variables. One approach

is to perform point estimation for both the latent variables and the parameters in

an alternating fashion [82], but this is prone to over-fitting [83] and convergence

issues. Another approach is to use Markov Chain Monte Carlo (MCMC) methods,

which can be computationally expensive [84], especially in high dimensions. As

an alternative, variational Bayes inference has shown much promise [55]. Note

that Variational Bayes is not a general purpose method and must be tailored to

the specific statistical model [85]. When there is a lack of conjugacy, as is the

case for the multinomial-Gaussian model in this paper, local variational bound

approximations are often adopted [54]. Additionally, when there is a problematic

expression in the joint density, such as the LogSumExp or LogGamma function,

which may prevent the inference of the latent variables, surrogate optimization

transfer based on Taylor series expansion can be applied to approximate the non-

linear function either with linear [62] or quadratic [86, 87, 88, 89, 90] functions. We

adopt such a local variational bound approach for deriving an inference algorithm

for our proposed model.
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The proposed model has connections with multi-view learning, text embed-

ding methods, and manifold learning. Supervised PCA [91, 92], Partial Least

Squares [93], Canonical Correlation Analysis [94], and Multimodal Factor Analy-

sis (MMFA) [95] allow fusing multi-view data into a common low-dimensional

latent space. Among them, only MMFA is applicable to non-Gaussian observa-

tions, which, however, does not apply to vectors of count data with observed

covariance. Furthermore, the MMFA assumes a non-random latent space, which

is known to be prone to over-fitting [83]. Variational auto-encoder-based deep

neural network models [96, 97] are often implemented with only a single latent

variable to explain multiple modalities. Such autoencoders are implemented by

maximizing evidence lower bound (ELBO) that exploits the product of experts

framework to combine multiple modalities. [98, 99] use an equalized mixture

of experts to combine modality-specific encoder predictions. [100] separates the

latent variables as joint and individual where joint latent variables are common for

each input modality and individual latent variables are only used to generate the

corresponding observations. Deep generative models have shown recent promise

for modeling densities of complex structured data, providing accurate predictions

for out-of-sample inputs when the number of training samples is large. However,

most microbiome datasets, which are the focus of this paper, have few samples,

often many fewer than the number of features. Thus deep models are prone to

overfitting such datasets. Furthermore, unlike the proposed model, there is no

straightforward way to predict the covariance structure of the observation space

using deep learning models.

Count vector data also arises in natural language processing (NLP), where a
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sentence or a document can be described using a bag-of-words representation.

Early NLP models, such as Latent Semantic Analysis/Indexing [101], perform

factorization of the count matrix using Singular Value Decomposition, but do not

account for the multinomial nature of the data. More recent algorithms, such as

Word2Vec [102] and Glove [103], model the sequence of words using a context

window. Contemporary contextual word embedding methods [104], on the other

hand, employ deep-learning models. ELMO [105] and BERT [106] are among the

most popular, which exploit Recurrent Neural Networks and Transformers, to

model the hidden dynamics between consecutive words, respectively. Note that,

many NLP algorithmsuse Markovian dynamical models for dependence between

consecutive words. However, gene indices for microbiome assays are not ordered

making NLP inapplicable.

While our proposed model uses dimension-reducing latent variable parameteri-

zation, it differs significantly from manifold learning algorithms. Such algorithms

learn low-dimensional representations using methods such as Multidimensional

Scaling [107], Kernel PCA [108], Isomap [109], Local Linear Embedding [110], and

t-distributed Stochastic Neighbor Embedding [111]. Unlike the Bayesian hierarchi-

cal models introduced by our model, manifold learning algorithms are not capable

of specifying the predictive distribution of the latent variables, performing model

integration over different feature categories (species), or specifying a covariance

model.

We summarize our contributions as follows. First, we propose a novel multinomial-

Gaussian graphical model to fuse and capture the low-rank covariance structure

in counting data of disparate types. Our low-dimensional continuous latent space
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Figure 3.1: Graphical model representation of the proposed latent variable model. xkl,i corresponds
to the ith sample of community l collected from environment k. The variables {xkl,i}l=1:L share a
common low-dimensional latent variable zk,i that captures the hidden causes of the observations.

formulation provides dimensionality reduction that can be used for visualization

of the count vectors on a common space.

Second, we develop a novel and computationally scalable optimization algo-

rithm based on variational inference to fit the proposed model, which exploits

variational local bound approximations. Third, we validate and illustrate the

model and its inference algorithm on a synthetic dataset and a real-world bacterial

microbiome dataset.

3.2 Proposed Model

In this section, we formally define our proposed model and its corresponding

variational inference algorithm. Lastly, we discuss computational complexity.

3.2.1 Notation

We denote the ith count vector replicate for the lth species as xkl,i ∈ Z
dl
+,

where k indexes the experimental condition, and dl denotes the total number
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of transcripts for species l. The total number of experimental conditions from

which the samples are collected is denoted as K, and the total number of species

in the model community is denoted as L, hence l = 1, . . . , L and k =, . . . , K.

For each experimental condition, different numbers of identically distributed

samples are collected. Hence, we denote the total number of samples for the

experimental condition k as Ik. Concisely , the dataset for experimental condition

k is Dk = {{xkl,i}L
l=1}

Ik
i=1.

3.2.2 Latent Variable Model

We model the observed multi-species model community data as generated

from a low-dimensional latent variable generative model. Under this model, the

data are conditionally multinomial distributed given the latent variables, which

are themselves Gaussian distributed with mean µk and covariance matrix Σk. As

will be shown below, the model fuses the observed data across species and it

induces a low-rank decomposition of the population transcriptome covariance.

Let zk,i ∈ Rdz be the latent variable assigned for the data sample Dk,i. zk,i thus has

the following multivariate normal prior distribution:

(3.1) p(zk,i; µk, Σk) = N (zk,i; µk, Σk),

where µk ∈ Rdz is the prior mean vector and Σk ∈ S
dz
++ is the positive definite

prior covariance matrix. The observed data consists of count vectors of the

transcriptomes, which are modeled as multinomial distributed [63]. We model

the conditional distributions of the observed count vectors of species l as follows:
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(3.2) p(xkl,i|zk,i) = Mu(xkl,i; Nkl,i,S(Θklzk,i)),

where Nkl,i is the total number of counts of the ith data sample of species l

and Mu denotes the multinomial distribution with the form, Mu(x; N, p) =

N!
x1!x2!...xD ! ∏D

d=1 pxd
d . Note that we have introduced one more model parameter

for each species, specifically Θkl ∈ Rdl×dz , that maps lower dimensional latent

space to the higher dimensional observation space of species l. Also note that

both the latent variable zk,i and the parameter Θkl are real-valued. Therefore, to

provide a proper simplex support set for the multinomial distribution, we use the

soft-max function, S(η)d = exp ηd/ ∑D
d′=1

exp ηd′ , where S(η)d is the dth element

of probability vector S(η) and η = Θklzk,i for notational simplicity. The output of

this function is a proper probability vector, i.e., ∑D
d=1 S(η)d = 1 and S(η)d ≥ 0 for

all d = 1, . . . , D. See Fig. 3.1 for a graphical representation of the proposed model.

The lower dimension of the latent variables is a key feature of our model

since it explicitly induces lower rank constraints on the observation covariance

matrix, as will be explained in Section II-D, leading to a reduction in the total

number of model parameters. It also improves the computational efficiency of

the optimization algorithms, as shown in Section II-E. A theoretical justification

is supplied by the manifold hypothesis [112], which holds that most naturally

occurring signals lie in a lower dimensional space, in addition to the principle

of Occam’s razor [113], which holds that choosing less complex models leads to

better and more stable performance.

Although it is natural to model the observed counts as multinomial distributed,

it may not be obvious why we use Gaussian latent variables for the latent space.
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A conjugate distribution such as Dirichlet may seem more natural than the

Gaussian distribution, which is not conjugate to Multinomial. However, the

components of the Dirichlet distribution are nearly independent [62], hence it

is non-trivial to capture the correlations between the hidden components. On

the other hand, the Multivariate normal distribution has a covariance parameter

that specifically captures the correlation between the hidden components. This

is useful for modeling the correlation between multiple datasets. Similar model

assumptions are also adopted in topic models [62, 114], categorical PCA [89], and

Gaussian process classification [90]. Note that, although the communities are

dependent through the latent variables, the experimental conditions are modeled

as independent. Hence, there is no coupling between the experimental conditions

and thus we fit independent models for each condition.

The joint log-likelihood of the proposed model is of the form ∑K
k=1 ∑Ik

i=1 log p(zk,i, Dk,i),

where:

log p(zk,i, Dk,i) = log p(zk,i) +
L

∑
l=1

log p(xkl,i|zk,i)

=− 1
2
[
(zk,i − µk)

TΣ−1
k (zk,i − µk) + log |Σk|

]
+

L

∑
l=1

D

∑
d=1

xkl,id(Θkl,dzk,i − lse(Θklzk,i)) + const,

(3.3)

in which lse denotes the log-sum-exp function, i.e., log of the denominator of the

soft-max function, lse(η) = log ∑D
d=1 exp ηd, and we suppress the deterministic

parameters to avoid clutter. Taking the expectation with respect to zk,i is tractable

for the linear and quadratic terms, but intractable for the lse term. We describe an

asymptotic approximation in the next section.
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3.2.3 Optimization

Next, we develop a variational EM maximum likelihood algorithm [54, 55]

to infer the deterministic parameters µk, Σk, and Θkl. The main objective is to

maximize the likelihood of the observations under the model. The algorithm

comprises two alternating steps: i) the Expectation step (E-step), where we

integrate out the latent variables, ii) the Maximization step (M-step), where we

optimize the model parameters to maximize the marginal likelihood.

Objective

The proposed model uses Gaussian latent variables for the multinomial ob-

servations. Due to the lack of conjugacy between Gaussian and Multinomial

distributions, the likelihood function is not closed form. Specifically, integrating

out the latent variables becomes intractable (See Section 3.2.3 for the details).

Hence, we resort to variational inference, in which a lower bound on the like-

lihood function is derived and maximized. This lower bound is obtained by

approximating the posterior distributions of the latent variables. In variational

inference, the objective is to minimize the distance (KL-divergence) between the

approximate and exact posterior distributions. This objective can be expressed for

a single latent variable zk,i as follows:

KL(qλk,i |p) = Eqλk,i
log
[ q(zk,i; λk,i)

p(zk,i|Dk,i)

]
= Eqλk,i

log
[ q(zk,i; λk,i)

p(zk,i, Dk,i)
p(Dk,i)

]
= Eqλk,i

[
log q(zk,i; λk,i)− log p(zk,i, Dk,i)

]
+ log p(Dk,i),

(3.4)
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where λk,i corresponds to the set of parameters of the approximate poste-

rior distribution q(zk,i; λk,i). The expectation operator is defined as Eqλ
f (z) =∫

f (z)q(z; λ)dz. Note that the evidence (marginal likelihood) p(Dk,i) does not

depend on zk,i. Hence, the negative of the expectation term forms a lower bound

on the log evidence since the KL distance is always non-negative. This function

is known as evidence lower bound (ELBO) and it is the objective function that is

maximized in variational EM. The ELBO has the following form:

(3.5) L =
I

∑
i=1

K

∑
k=1

Eqλk,i

[
log p(zk,i, Dk,i)− log q(zk,i; λk,i)

]
,

where the first term in the expectation corresponds to the joint distribution

of the latent variable zk,i and the associated observed data Dk,i. The second

term corresponds to the log of the approximate posterior distribution. The joint

distribution has the following form:

(3.6) log p(zk,i, Dk,i) = log p(zk,i) +
L

∑
l=1

log p(xkl,i|zk,i).

The expressions for p(xkl,i|zk,i) and p(xkl,i|zk,i) are given in Eqn. 3.2 and Eqn. 3.1,

respectively. We approximate the posterior distribution of zk,i as Gaussian with

the following form:

(3.7) q(zk,i; λk,i) = N (zk,i; mk,i, Sk,i),

where λk,i = {mk,i, Sk,i} is the set of free parameters. Specifically, mk,i is the

posterior mean and Sk,i is the posterior covariance. The expectation of the ap-

proximate posterior distribution in Eqn. 3.5 corresponds to the Gaussian entropy

function, which has a closed-form expression. However, the expectation of the

joint distribution is intractable to compute. Next, we present an approximation to

resolve the issue.
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An upper bound on the LSE

To see why the conditional expectation is intractable, note that the explicit form

of the log-likelihood of xkl,i is a multinomial distribution:

(3.8) log p(xkl,i|zk,i) =
D

∑
d=1

xkl,id(Θkl,dzk,i − lse(Θklzk,i)).

Taking expectation corresponds to integrating out Gaussian distributed zk,i. The

conditional expectation of the first term is easily determined since it linearly

depends on zk,i. However, the expectation of the second term, which requires

integrating zk,i over the lse function, is intractable to compute in a closed form.

To overcome this issue, we perform quadratic surrogate optimization transfer (See

Appendix 3.5.2), in which a quadratic approximation to the lse function [86] is

applied. This results in an upper bound on the multinomial log-likelihood. This

approximation uses the second-order Taylor series expansion with a fixed Hessian

matrix. Particularly, the quadratic upper bound takes the following form (See

Appendix 3.5.3 for more details):

(3.9) lse(Θklzk,i) ≤
1
2

zT
k,iΘ

T
kl AlΘklzk,i − bT

kl,iΘklzk,i + ckl,i,

where

(3.10) Al = 0.5[IDxl − (1/(Dxl + 1))1Dxl 1
T
Dxl

]

is a constant Hessian matrix, whose entries depend only on the dimension of the

observation space. The other intermediate parameters bkl,i and ckl,i are given as

follows:

(3.11) bkl,i = AlΦkl,i − S(Φkl,i),
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(3.12) ckl,i =
1
2

ΦT
kl,i AlΦkl,i − S(Φkl,i)

TΦkl,i + lse(Φkl,i),

where Φkl,i is the Taylor series expansion point, which is optimized as a free

variational parameter. Note that intermediate parameters are a deterministic

function of Φkl,i. Plugging the approximation in Eqn. 3.9 to Eqn. 3.5 results in

a convex lower bound on ELBO, denoted as L′, which is ≤ L and tight at Φkl,i.

Using L′ resolves the intractable integration in Eqn. 3.5, resulting in closed-form

posterior parameter estimates, as described in the next section.

Posterior Distributions - E-step

The E-step in the variational EM algorithm computes approximate posterior

distributions of the latent variables, which are subsequently used to compute

the expectations in Eqn. 3.5. Particularly, there are two parameters to be es-

timated for each latent variable zk,i, which are the mean vector mk,i and the

covariance matrix Sk,i. It is straightforward to maximize over these parameters by

using the completing-the-square approach [57] (See Appendix 3.5.1). The terms

that quadratically depend on zk,i in the joint log-likelihood yield the posterior

covariance update:

(3.13) Sk,i =
[
Σ−1

k +
L

∑
l=1

Nkl,iΘ
T
kl AlΘkl

]−1,

where Nkl,i is the total number of counts of the ith data sample. Similarly, the

terms that linearly depend on zk,i yield the posterior mean update:

(3.14) mk,i = Sk,i
[
Σ−1

k µk +
L

∑
l=1

(xkl,i + Nkl,ibkl,i)Θkl
]
.

Lastly, we update the Taylor series expansion point as:

(3.15) Φkl,i = Θklmk,i.
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Note that the update of Φkl,i depends on the posterior mean. Hence, the algorithm

repeats the updates in Eqn. 3.13, Eqn. 3.14, and Eqn. 3.15, respectively, until

convergence of the expansion point Φkl,i.

Point Estimates - M-step

The M-step in the variational EM algorithm maximizes the ELBO with respect

to the model parameters. Using the posterior distributions computed in the E-step,

we compute the lower bound L′ by taking the expectations with respect to the

posterior distributions. Afterward, taking the derivatives with respect to the

model parameters yields closed-form update equations for the model parameters.

Specifically, the updates for each Θkl are given as follows:

Θkl =
[ Ik

∑
i=1

A−1
l (xkl,i + Nkl,ibkl,i)mT

k,i

]
[ I

∑
i=1

Nkl,i(mk,imT
k,i + Sk,i)

]−1
,

(3.16)

where A−1
l = 2[IDxl + ((Dxl + 1)/(Dxl + 2))1Dxl 1

T
Dxl

] using Matrix inversion

lemma. The update equations for the mean parameter and covariance of the

prior distribution of zk,i then follow as:

(3.17) µk =
1
Ik

I

∑
i=1

mk,i,

(3.18) Σk =
1
I

I

∑
i=1

(mk,i − µk)(mk,i − µk)
T + Sk,i,

respectively. Derivations are given in Appendix 3.6 and the variational EM

algorithm is summarized in Algorithm 1.

Limitations

The model parameters of the proposed model are unidentifiable. Due to the

Gaussian prior on the latent variables, arbitrary rotation on Θkl results in the
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same likelihood [63]. This makes the direct interpretation of the inferred latent

variables ambiguous. This problem can be addressed by enforcing Θkl to be lower

triangular and the main diagonal to be concurrently constrained to be positive

[115]. Alternatively, the parameter matrix can be forced to be orthonormal and the

columns are ordered by decreasing the variance of the associated latent factors, as

in PCA. For more interpretability, sparsity-promoting priors such as ARD [116]

and spike-and-slab [117] can be considered, or varimax method [118] can be used

to determine the proper rotation matrix. However, identifiability does not affect

the predictive performance nor the predictor of covariance, which is the main

focus of this paper, hence we leave these constraints in future work.

The objective function optimized by the proposed variational EM algorithm

is invariant to rotations, and consequently, the final parameter estimates depend

on the initialization. In other words, each initialization of the EM algorithm

may result in different parameter solutions, which correspond to different local

minima. However, the EM algorithm converges to a stationary point regardless

of the initialization since it is guaranteed to monotonically increase L′. One

can always improve on the estimator by restarting the EM algorithm multiple

times and choosing the maximal converged value. However, we didn’t observe

significant improvement in covariance prediction accuracy using restarts.
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Algorithm 1 Proposed Variational EM algorithm

Input: {Dk}k=1:K
Initialize {µk, Σk, {Θkl , {Φkl,i}i=1:Ik}l=1:L}k=1:K

while not L′ converged do
for k = 1 to K do

for i = 1 to Ik do
Infer posterior covariance Sk,i by Eqn. 3.13

Infer posterior mean mk,i by Eqn. 3.14

for l = 1 to L do
Update variational parameter Φkl,i by Eqn. 3.15

end for
end for
for l = 1 to L do

Estimate Θkl by Eqn. 3.16

end for
Estimate µk by Eqn. 3.17

Estimate Σk by Eqn. 3.18

end for
Compute L′ by Eqn. 3.5

end while
Output: {µk, Σk, {Θkl}l=1:L}k=1:K

3.2.4 Model-predicted Density

By virtue of our quadratic surrogate model for the posterior, we can derive

an expression for the posterior covariance matrix from the inferred model. The

proposed model enables this derivation of the predicted covariance matrix in two

ways. First, are a set of Gaussian latent variables, common for all species, which

model the observation covariance matrix with a low-rank decomposition. Second,

is the quadratic lower bound on the multinomial likelihood, which results in a

multivariate Gaussian form for the likelihood of the observations marginalized

over the latent variables. Particularly, we define a transformed version of the

sample xkl,i as x̃kl,i with the following function:

(3.19) x̃kl,i = A−1
l (bkl,i + xkl,i),

where Al is the matrix defined in Eqn. 3.10. Then, it is straightforward to show

that the likelihood of the transformed data x̃kl,i is given as follows (See Appendix
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3.6):

p(x̃kl,i; Θkl, µk, Σk)

=
∫
N (x̃kl,i; Θklzk,i, A−1

l )N (zk,i; µk, Σk)dzk,i

= N (x̃kl,i; Θklµk, A−1
l + ΘklΣkΘT

kl),

(3.20)

where the covariance matrix Ckl,intra = A−1
l +ΘklΣkΘT

kl and the mean vector ϕkl =

Θklµk are of interest to us, in which Ckl,intra captures intra-species correlations

of species l in condition k. To obtain inter-species correlations, define Ã−1 =

diag(A−1
1 , . . . , A−1

L ) and Θ̃k = [Θk1, . . . , ΩkL], then Ck,inter = Ã−1 + Θ̃kΣkΘ̃T
k gives

a covariance matrix for both inter-species and intra-species. To convert any

covariance matrix to a proper correlation matrix, which is useful for visualization

and analysis, one can use the transformation Corr = diag(C)−1/2Cdiag(C)−1/2.

3.2.5 Computational Complexity

The computational complexity of the variational EM algorithm determines the

algorithm’s scalability to large datasets. For notational simplicity, we assume

that there is only one discrete condition, hence we use I instead of Ik. In the

E-step, Eqn. 3.13 computes posterior covariance, which requires multiplication

of a dz × dl matrix with its transpose resulting O(d2
zdl) complexity. This process

is repeated for each species resulting in O(Ld2
zdl). Inverting the matrix for each

sample costs O(Id3
z). Hence, the overall asymptotic complexity for the posterior

covariance computation is O(I(d3
z + Ld2

zdl)). The posterior mean computation in

Eqn. 3.14 involves matrix-vector multiplications that require O(Ldzdl), and O(d2
z)

due to covariance posterior covariance multiplication. Hence, the total cost per

sample is O(Ldzdl + d2
z) and the overall cost is O(I(Ldzdl + d2

z)). Consequently,

the complexity of the E-step is O(I(Ldzdl + d2
z + d3

z + Ld2
zdl)). Removing non-
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Figure 3.2: BIC approximation to the evidence, and RMSE of the predicted covariance matrix with
respect to the latent space dimension dz. True dimensions are 4, 8, and 12. Blue, orange, and green
curves show RMSE and the BIC penalized log likelihood (BIC), respectively. Note that the BIC
exhibits a clear maximum over latent space dimension dz. BIC values are scaled by factor 10−3.

dominant terms results in O(I(d3
z + Ld2

zdl)). One can see that this scales linearly

in terms of L, dl, and I. On the other hand, the dominant computation in the M-

step is for Θkl . Eqn. 3.16 comprises two terms. The first term requires O(Idldz) due

to I times vector-vector outer products. The second term requires O(Id2
z + d3

z) due

to vector-vector outer products and subsequently matrix inversion. Multiplying

these terms costs O(dld2
z), hence resulting total complexity of O(L(Idldz + Id2

z +

d3
z + dld2

z)) for all l = 1 : L. It is also clear that this computation scales linearly in

terms of L, dl, and I. Modeling the conditions independently also induces linear

complexity in terms of K. In summary, both E and M steps scale linearly in terms

of K, L, dl, and I, which suggests that the proposed optimization algorithm is

scalable for large datasets as long as the latent space dimension dz is relatively

small.

3.3 Experiments

In this section, we perform numerical experiments to illustrate the proposed

model. We start with simulation studies, then conclude with experiments on a
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Figure 3.3: 2D Latent space visualization of 100D count vectors

bacterial microbiome dataset.

3.3.1 Simulations

We generate synthetic datasets i) to explain the model selection strategy, ii) to

demonstrate the accuracy of the latent embeddings, and iii) to show the ability to

capture the covariance structure from observed data.

Model Selection

The proposed algorithm estimates the covariance matrix with a low-rank

decomposition. The rank of the matrix is equal to the number of components dz

in the latent space. which is a model hyper-parameter to be determined. We use

the Bayesian Information Criterion (BIC) to estimate this parameter using only

the training dataset. The BIC arises from the Laplace approximation to the model
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Figure 3.4: RSME of the covariance estimation with respect to the average total number of counts
observed in the metatranscriptomic data for different latent space dimensions dz. As the counts
increase the errors decrease until a saturation limit. The lower the dimension of the latent space,
the more sensitivity to the total number of counts.
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Figure 3.5: RMSE of the predicted covariance matrix with respect to the latent space dimension
for three different observation space dimensions dl .

posterior p(M|Dk) [119], where M is the complete model including the latent

dimension dz. This results in a Bayesian estimate of dz: dz = argmaxdz
BIC, where

BIC = log p(Dk)− 0.5× log Ik × dof, which is a function of the total number of

unknown parameters that penalizes the log-likelihood with a model complexity

penalty term. In the proposed model, we use ELBO lower bound to the likelihood

by following [120]. The unknown parameters of the model are {Θkl}L
l=1, µk, and

Σk. Hence, the total number of parameters is dof = K× (dl + K). To illustrate the

BIC model selection for the proposed model, we simulate three datasets with true

latent space dimensions 4, 8, and 12, respectively, and then train multiple models
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Figure 3.6: Estimated normalized covariance matrices produced by the considered algorithms
for a two-species community with simulated transcript data. For more details on the model see
Section 3.3.1. The proposed model provides a much more accurate estimated covariance than the
other methods.

while varying the dimensions dz over {2, 3, . . . , 12} as the search range. We repeat

the experiment 50 times to report the performance. The panel on top of Fig. 3.2

shows the average BIC values obtained after convergence of the variational EM

algorithm. We see that maximum BIC values are obtained in the vicinities of

the true ranks for all the datasets. On the other hand, the panel on the bottom

shows the RMSE values of the estimated covariance matrices. One can see that

the lowest errors are achieved at the ground truth dz values, which validates the

model selection method.

Embedding Characteristics

We generate a synthetic dataset with a 2-dimensional latent space having 3 dif-

ferent classes, i.e., experimental conditions, according to the model specification in

Section 3.2.2. The latent variables are sampled for each class from different Gaus-

sian distributions. The associated means are predefined as [0, 0], [1.5, 1.5], [−1,−1],

and the variances of the isotropic covariances are selected as 0.5, 0.5, 0.1, respec-
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tively. Three class conditional densities are generated with different affine trans-

formation parameters. The observation space is 25-dimensional. The observations

are sampled from the conditional multinomial distributions with soft-max link

function as in Eqn. 3.2. We generate 200 observations for each class with a

fixed total number of counts, which is 100, per observation, then stack all the

observations. Fig. 3.3.a shows the true embeddings of the resulting dataset. We

trained the proposed algorithm with the true latent space dimension. Fig. 3.3.b

shows the embeddings of the model, which are obtained through the posterior

distributions. Due to the non-identifiability of the model, the latent variables

can only be recovered up to a rotation. The distorted shape of the latent clusters

in Fig. 3.3.b is due to the use of the soft-max link function. If there is a large

component in the affine transformed latent vector, the other components are

washed out, hence such points would map to very close points in the observation

space. Notwithstanding the differences between Fig. 3.3.a and Fig. 3.3.b, the

model preserves the clustering structure accurately.

Influence of the Total Counts and Dimensions on Performance

The number of counts of the observed vector xkl,i is an observation-specific

parameter, which affects the accuracy of the proposed algorithm. Figure 3.4 shows

the effect of the number of counts Nkl,i on the RMSE values of the covariance

estimator under three different latent dimension settings. We sample the total

counts of a simulated vector from the Poisson distribution with a fixed mean. We

also fix the observation dimension to 128. RMSE is reported based on averaging

50 experiments. Figure 3.4 shows that increasing the mean number of counts

improves performance. In particular, we see that the total counts Nkl,i and the
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mean error are inversely proportional. This is expected since the number of

counts directly affects the posterior uncertainty (Eqn. 3.13) and mean (Eqn. 3.14).

The contribution to the ELBO of the observations increases as the total count

increases. Furthermore, for the low number of counts, the covariance matrix

becomes harder to predict due to higher vulnerability to over-fitting. Hence,

the lower the dimension of the latent space, the more sensitivity to the total

number of counts. On the other hand, Fig. 3.5 demonstrates the opposite trend

when the dimension of the observation space dimension is increased. Here the

total mean counts are fixed at 1000. In higher dimensional datasets, the model

struggles to estimate the covariance structure when the rank is low. However, this

phenomenon diminishes when we observe more counts as can be seen in Fig. 3.4.

Baseline Algorithms

Here we present the performance comparisons of the proposed method rel-

ative to several baseline methods for estimating the underlying covariance and

inverse covariance matrices. i) Empirical covariance, which is computed as the

sample covariance. ii) The Ledoit-Wolf estimator [121], which uses shrinkage

regularization to perform MAP estimation for the covariance matrix by assigning

an inverse Wishart prior to the covariance matrix. iii) Gaussian Copula Graph-

icalLasso [66], which penalizes the precision matrix with L1-norm constraints

after transforming the data by using Gaussian copulas. Regularization forces the

entries of the precision matrix to be sparse. iv) Factor Analysis [63] uses another

form of regularization of the covariance matrix by imposing a low-rank structure.

v) GemBag [78], assumes a common sparsity structure among the environmental

conditions by modeling the edges of the environment-specific precision matri-
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ces using hierarchical priors. Each of these aforementioned baseline methods is

expected to perform best when the data, or its transformed version, is normally

distributed. vi) jSDM [80], which is another latent variable model that uses the

log link function for the count observations. Environmental conditions and latent

variables are graphically joined at the mean vectors, i.e., logits. For the Empirical

Covariance, Ledoit-Wolf, GraphicalLasso, FA, and GemBag, we first normalize

the data by subtracting the mean and dividing by the variance, before running

these methods. On the other hand, the non-Gaussian counting nature of the data

is explicitly modeled in our proposed model and jSDM, thus running on the

raw observations. For model selection in FA, jSDM, and the proposed model,

we use the exact rank of the simulated dataset. The regularization coefficient

of the Gaussian Copula GraphicalLasso algorithm is estimated by using 5-fold

cross-validation. For the Ledoit-Wolf algorithm, we used the expression for the

shrinkage coefficient given in [121]. See Section III in the supplementary for

further implementation details.

Simulating Model Communities

Next, we generate a synthetic dataset that contains the transcript abundance

data (an estimate of gene expression) of two different species existing in the same

community, hence L = 2. The latent variables zi with dimension dz = 3 are

generated for each measurement site by sampling from zi ∼ N (0dz , Idz), where

i indexes the replicate for i = 1, . . . , I. These latent variables have elements that

correspond to the hidden factors generating the data, such as environmental

variables, mediator species effects, and direct associations. We transform the

latent variables to the probabilities in the observation space, whose dimensions
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(abundance of transcripts) are chosen as d1 = 20, d2 = 10 by using affine and sub-

sequently soft-max transformations as described in Section 3.2.2. The parameters

Θl ∈ Rdl×dz , are chosen randomly by sampling from a zero mean multivariate

normal distribution. Then, we sample the observed data xl,i from the multinomial

distribution. The total counts Nl,i of a sample is chosen randomly by sampling

from a Poisson distribution with rate parameter 1000. We simulate a total of

I = 100 replicates for each environmental condition where the total number of

conditions K = 2. The true covariance matrix is then given as Θ̃kΘ̃T
k , where

Θ̃k = [Θk,1, Θk,2].

Correlation Results

Fig. 3.6 shows the estimated covariance matrices of the baseline algorithms,

the proposed algorithm, alongside the ground truth matrix, when the simulated

datasets are realized following Section 3.3.1. The proposed model can recover

the covariance structure accurately. The relatively poorer accuracy of the other

methods can be attributed to several factors. First, these models do not exploit

the counting nature of the data. The second reason is that the covariance matrix

is simulated with a low-rank structure, which is not taken into account by the

Gaussian Copula Graphical-Lasso, Ledoit-Wolf, or standard sample covariance

estimation methods. Third is the common structure assumption of GemBag

and jSDM among the covariance/precision matrices for each environment. As

the data were simulated from the proposed model, the proposed algorithm

naturally performs better. Section IV in the supplementary discusses more on

model mismatch concept with additional simulations. Note also that, for multiple

species, the proposed model can discover both inter-species and intra-species
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Table 3.1 Mean and standard deviation of RMSE between the estimated covariance/precision
matrices and ground truths over 50 different realizations of the simulated abundance dataset.

Algorithm Covariance Precision
Empirical .366 ± .012 .291 ± .016

Ledoit-Wolf .340 ± .013 .142 ± .002

GLasso .343 ± .015 .090 ± .002

GemBag .278 ± .009 .102 ± .002

FA .317 ± .036 .159 ± .007

jSDM .310 ± .025 .071 ± .004

Proposed .176 ± .016 .023 ± .001

correlations. Table 3.1 shows the resulting RMSE values between the estimated

and the ground truth covariance matrices for the aforementioned simulation

setting. The proposed model achieves lower error overall. This is expected since

the model uses an ELBO approximation to the true marginal likelihood function.

3.3.2 Bacterial Community Experiment

In this section, we demonstrate a real-world use-case of the proposed model:

transcript analysis of a bacterial model community called THOR [122].

Microbial model communities are useful to understand principles that govern

community behaviors [123, 124, 125, 126]. The Hitchhikers Of the Rhizosphere

(THOR) is a model community consisting of three microbial species, Bacillus cereus,

Flavobacterium johnsoniae, and P. koreensis that co-isolate from field-grown soybean

roots. The organisms in THOR represent three dominant rhizosphere taxa (at the

phylum level), and are common in soil and the mammalian gut. B. cereus is a

Firmicute that carries F. johnsoniae, a member of the Bacteriodetes, and P. koreensis,

a member of the Proteobacteria, as hitchhikers [127]. Due to their abundance in

several environments, their may demonstrated interactions in the lab and field,

and their genetic tractability, these species make a useful model community with

relevance to the natural world. The model community provides a simple system

in which to study and model community-level interactions, which are poorly
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(c) P. koreensis

Figure 3.7: Effect of koreenciene removal on the centrality (vertex degree) of vertices in the
transcriptional orthology correlation networks inferred from our model for the experimental
THOR dataset. For each species, the ortholog IDs are sorted in decreasing order of the wildtype
vertex degree. The upper row shows plots of the degree of each vertex (transcriptional orthology
ID), in descending order of magnitude, for the wildtype condition. The bottom row shows
corresponding plots of the vertex degree when the koreenceine pathway is removed (mutant
condition), under the same ordering of vertices as in the top row. P. koreensis preserves its network
connectivity better than the other two species. The network connectivity of F. johnsoniae is the
most affected by koreenciene removal.

understood. Developing governing principles of community behavior may lead to

strategies to manipulate microbiomes for human or environmental health.

The dataset is collected under two conditions associated with the treatments

applied to P. koreensis. In the first condition, the THOR community contains

the wild type P. koreensis strain and in the second condition the wildtype is

replaced with a mutant of P. koreensis that does not produce koreenceine antibiotics.

Production of koreenceines is an important factor in community interactions

because they inhibit the growth of F. johnsoniae [128] and B. cereus protects F.

johnsoniae by modulating koreenceine levels. By using our proposed model, in

particular the associated estimated joint probability density of the data, we will be

able to reveal the effects of the treatment. Since the joint probability density model

is parameterized by the mean and covariance of a multivariate Gaussian latent

variable (See Section 3.2.4), the mean and covariance parameters play the principal

role in our metatranscriptomic analysis. For brevity, we focus our discussion on

the inferred covariance parameters here (See Supplementary for discussion of the
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mean parameters inferred by the model).

The microbial community dataset consists of a total of 17244 gene transcripts

associated with three species. There were respectively 38 and 36 replicates for

the community with wildtype and mutant strains of P. koreensis. 343 transcripts

were removed from the analysis as they had zero counts over all experimental

replicates. After removing these transcripts, B. cereus, F. johnsoniae, and P. koreensis

express 5903, 5146, 5852 transcripts, respectively. We reduced the dimension of

the feature space using orthological groupings of gene transcripts into metabolic

pathways1. Specifically, after pathway mapping, each feature corresponds to a

transcriptional orthology ID, and the associated data is the summation of the

counts of the transcripts tagged with that ID. We aggregated all the transcripts that

were not mapped to any Kegg ortholog into a single non-assigned orthology ID,

denoted KXXXXX, and we only considered those ortholog IDs that are present in

all 3 species. This filtering resulted in a set of 613 ortholog IDs, which corresponds

to the dimension of the feature space used in our model.

The rank of the proposed model was determined by successively fitting the

model to latent spaces of dimensions ranging between 5 and 50 with increments

of 5. Then, the optimal model rank was determined as the latent dimension that

yields the highest value of the BIC as described in Section 3.3.1. The optimal

model rank was found to be 40. The parameters (mean and covariance) of the

models were subsequently refitted with the optimal dimension. The probability

distribution of the data is computed under the wildtype and mutant conditions,

whose explicit form is given in Eqn. 3.20 as a marginalization over the latent
1The transcriptional orthology mappings of the THOR gene transcripts to metabolic pathways were obtained using

Kegg https://www.genome.jp/kegg/. See supplementary for an example.
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variables.

Network centrality changes: We evaluate the effect of the removal of koreen-

ciene (mutant) on the centrality of the inferred 613× 613 correlation network of

metabolic pathways. Here the centrality of a vertex of the network is measured

by vertex degree, i.e., the number of edges connecting the vertex. To ensure

that the networks contain only the most biologically significant edges in the

networks, we applied a very high correlation threshold (0.95) to the respective

inferred wild-type and mutant correlation matrices produced by fitting our pro-

posed graphical model to the data. Using such a high threshold is in line with

established RNA-Seq network inference practices [129]. Figure 3.7 illustrates the

effect of the removal of koreenceine on the degrees of the nodes (transcriptional

orthology IDs) in these networks. Comparison of the upper panels with the lower

panels of the figure indicates that the vertex degree distribution of F. johnsoniae

is most affected, followed by B. cereus, with P. koreensis the least affected. This

relative ordering of sensitivity of the three species to koreenceine removal shown

for vertex degree in Fig. 3.7 mirrors the relative ordering of sensitivity shown for

the mean changes (See Fig. 2 and associated discussion in the Supplementary).

Fig. 3.7 illustrates the relative effect of koreenceine removal on increases vs

decreases in vertex degree of the transcriptional orthology correlation network for

each species. In the figure, the transcriptional orthology IDs are sorted according

to the difference between mutant vs wildtype vertex degree. The blue curve

shows the resultant vertex degree difference and the orange curve shows the

vertex mean difference. Observe that the order of decreasing differences of vertex

degree does not correspond to the order of decreasing differences in vertex mean.
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Figure 3.8: Effect of koreenceine removal on vertex centrality and vertex mean counts for the
transcriptional orthology correlation network. For each species, the ortholog IDs are sorted in
decreasing order of the vertex degree difference between mutant and wild type. It is notable that,
with few exceptions, all orthology IDs with significant changes in vertex mean also have changes
in vertex degree, but not conversely. Furthermore, the asymmetry of the blue curve suggests that
the removal of koreenceine is associated with an increase in network connectivity (many more
vertices whose degrees increase than decrease), especially in F. johnsoniae.

However, a change in the vertex mean almost always accompanies a change in

vertex degree, although the converse is not true. Also note from the asymmetry

of the blue curves in Fig. 3.7 that the mutant’s networks have many more vertices

that increase than decrease in vertex degree as compared to the wild type. Thus

koreenceine removal seems to increase network centrality of a large number of

transcriptional orthologs, especially for F. johnsoniae. We point out that the large

spikes that appear in the orange curves (vertex mean difference) for F. johnsoniae

and P. koreensis, correspond to the ID KXXXXX, which are genes that were not

mapped to any Kegg transcriptional ortholog. Further discussion can be found in

the supplementary.

In summary, the proposed model can provide two important data analysis

components for microbiome model community analysis. First, we can assess

transcriptional orthology composition changes under the treatment by observing

the means of the marginal distributions provided by the proposed model. Second,

we can assess the second-order interaction changes by using the correlation net-

works that are obtained from the covariance matrices of the marginal distributions.
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These two components along with the abundance ratio analysis in [122] provide a

complementary analysis of microbial model communities, which can further be

interpreted by microbiologists.

3.4 Conclusion

A hierarchical Bayesian latent variable model was proposed for the joint anal-

ysis of multiple discrete datasets. We explained the associations between the

features of the datasets with a common lower dimensional latent space, repre-

sented by a set of independent identically distributed Gaussian random variables.

To overcome the lack of conjugacy between the multinomial observation distribu-

tion and the Gaussian latent space distribution, we developed a variational EM

algorithm based on quadratic bound approximations for estimating the param-

eters in the model. The computation of the algorithm scales linearly with the

number of features, samples, and datasets. Simulation studies show that the pro-

posed model can recover low-rank covariance structures accurately. Furthermore,

our real-world microbiome experiment demonstrates the potential real-world

utility of the model for the exploration of correlation and associated networks for

dichotomous microbiome data.

There are several promising directions for future work. One possible area is to

generalize the model to capture covariance structures of absence-presence datasets

by modeling the binary observations using Bernoulli distributions. Another gener-

alization can be achieved by the incorporation of covariates such as temperature,

ph, and physical/chemical perturbations, that may change the composition of the

species. The mean of the latent variables can be made a function of the covariates

to accomplish that. One another possible area is to incorporate system dynamics
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into the latent space so as to explicitly capture temporal correlations. In particular,

there is increasing interest in collecting longitudinal microbiome data for studying

adaptation, resilience, and dynamics over time. The incorporation of a state-space

dynamical model into our framework can reveal the temporal evolution of the

interactions between the genomes. Another future direction is to improve the

parsimony of the model by incorporating sparsity into the latent representation by

using sparsity-inducing priors for the covariance or inverse covariance (precision)

matrices.

3.5 Appendix

3.5.1 Estimation of Posterior Parameters

Log-likelihood of Multivariate Normal distribution logN (x; µ, Σ) can be written

as:

−1
2

xTΣ−1x + xTΣ−1µ + const

in which the second order term in x corresponds to the inverse of covariance

matrix Σ, and the linear term corresponds to the mean when multiplied with

Σ. Inferring the mean and covariance from linear and quadratic terms is called

completing the square approach. We make use of this method to infer the posterior

distributions of zk,i, which is denoted as q(zk,i; mk,i, Sk,i). Given the joint likelihood

in Eqn. 3.6 and quadratic approximation in Eqn. 3.9, one can collect the quadratic

terms in zk,i as follows:

−1
2

zT
k,iΣ
−1
k zk,i −

L

∑
l=1

Nkl,i

2
zT

k,iΘ
T
kl AlΘklzk,i,
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which follows Eqn. 3.13 for posterior covariance Sk,i estimate. Similarly, the linear

terms are collected as:

Σ−1
k µkzk,i +

L

∑
l=1

xkl,iΘklzk,i + Nkl,ib
T
kl,iΘklzk,i.

Collecting the terms and multiplying with the posterior covariance estimate yields

posterior mean mk,i estimate as given in Eqn. 3.14.

3.5.2 A note on Quadratic Surrogate Optimization Transfer

Due to the non-conjugacy between multinomial and multivariate normal distribu-

tions, computing the posterior distributions of the latent variables is intractable,

hence we can not obtain closed form expressions for the expectations of the joint

likelihood required for the M-step. We adopt an alternative variational inference

approach, called quadratic surrogate optimization transfer, where the problematic

terms of the joint log-likelihood are replaced with simpler quadratic surrogates

obtained by truncated Taylor series expansion. These quadratic functions have

tunable free variational parameters and expansion points that control the tightness

of the approximation, which are optimized concurrently. This differs from the

mean-field approach of variation Bayes inference, which is a global approximation

that uses a factorized approximation to the multivariate posterior distribution

in order to make the computation of statistical expectation tractable. Quadratic

surrogate optimization transfer is on the other hand performed locally for the

problematic terms of the joint likelihood, i.e., the approximated quadratic function

is created and optimized at each iteration of the EM algorithm. In the literature,

this approach has been used for logistic regression [86], multi-task learning [88],

discrete factor analysis [90], and correlated topic models [62].
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3.5.3 Upper bound to LogSumExp Function

For notational simplicity, let η = Θklzk,i and drop k, l, and i indexes. Second order

Taylor series expansion at arbitrary point ψ yields:

lse(η) ≤ lse(ψ) + S(ψ)T(η−ψ) +
1
2
(η−ψ)T A(η−ψ),

where we replace the original Hessian matrix with constant A in Eqn. 3.10 to

obtain the upper bound based on [86]. Reorganizing the terms corresponds to the

following quadratic function:

1
2

ηT Aη− (Aψ− S(ψ))Tη+
1
2

ψT Aψ− S(ψ)Tψ + lse(ψ).

Then, we introduce b and c for linear and constant terms, respectively, to simplify

the notation in the main text.

3.6 Derivation of M-step Updates

Taking expectation of L′ with respect to the posterior distributions of the latent

variables in Eqn. 3.14 and Eqn. 3.13 yields the following expression:

Ik

∑
i=1

[
xT

kl,iΘklmk,i −
Nkl,i

2
mT

k,iΘ
T
kl AlΘklmk,i

+ Nkl,ib
T
kl,iΘklmk,i +

1
2

log |Σ−1
k |

− 1
2
(mk,i − µk)

TΣ−1
k (mi − µk)−

1
2

Tr(Σ−1
k Sk,i)

− 1
2

Nkl,ivec(Θkl)
T(Al ⊗ Sk,i)vec(Θkl)

]
+ const,

where vec denotes the vectorization, Tr denotes the trace operator, and ⊗ is the

Kronecker product. The derivatives of this expression with respect to Θkl, µk, and
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Σ−1
k are given respectively as follows:

Θkl →
Ik

∑
i=1

[
xkl,imT

k,i + Nkl,ibkl,imT
k,i − Nkl,i AlΘklmk,imT

k,i

− Nkl,i AlΘklSk,i
]
,

µk →
Ik

∑
i=1

Σ−1
k (mk,i − µk),

Σ−1
k →

1
2

Σk −
1
2

Ik

∑
i=1

[(mk,i − µk)
T(mi − µk) + Sk,i].

Equating the derivatives to zero results in closed form update equations in Eqn.

3.16, Eqn. 3.17, and Eqn. 3.18, for Θkl, µk, and Σk, respectively.



CHAPTER IV

Hierarchical Bayesian Multitask Logistic Regression Model for
Microbiome Profiling

4.1 Introduction

Multitask learning (MTL) is a class of machine learning prediction models

where multiple related learning tasks are trained jointly [130] (see [131] for a recent

survey). This allows us to combine multiple related tasks (datasets) together to

increase the effective sample size, while keeping the interpretability of a single

base model. MTL has been an active area of research with applications including:

face recognition in computer vision; joint analysis of heterogeneous genomics

data; and social media sentiment analysis [132, 133, 134, 135].

In this chapter, we introduce a hierarchical Bayesian multitask logistic regres-

sion model tailored for binary predictions on multiple related datasets. While the

model is broadly applicable, we focus on the predictions of the disease conditions

of patients based on gut microbiome data, specifically.

It has been well established that microbes within the human gut affects human

health [136, 137, 138]. Motivated by the success of machine learning models in

areas such as computer vision, medical imaging, and protein prediction [139, 140,

141], there has been an increasing interest to employ machine learning models to

71
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perform health prediction based on human gut data [142, 143, 144, 145]. However,

application of machine learning methods to microbiome data faces two major

challenges. First typical microbiome data lies in high feature dimension, and the

number of microbes is significantly more than the number of samples available

[142]. In this regime, overparameterized models can suffer from overfitting of

the training data [146]. Second, in health applications it is essential that machine

learning models be interpretable and quantify uncertainty in their predictions,

which is not the case with most deep neural nets, for example [147].

We propose an interpretable predictor model that is based on a hierarchical

Bayesian generalized linear model (GLM) [148]. The model introduces a set of

binary variables shared across different datasets to represent the most informative

features (i.e bacterial species) for predictions. This enables the model to identify

the common bacterial species shared across the different studies where each one

corresponding to a distinct pathology.

In contrast to optimization based MTL approaches[149, 150, 151, 152], our pro-

posed Bayesian hierarchical modeling provides natural uncertainty quantification

through the posterior distribution of the label given the features and a flexible

framework to incorporate domain experts’ knowledge [41]. The proposed model

differs from [153, 154, 149, 150, 152, 155] in how the sparsity pattern is modeled:

inspired by [155] we use an overparameterized Bernoulli-Gaussian model instead

of regularizations, which has been demonstrated to have better support recov-

ery properties [156]. The Bayes posterior distribution is not in analytical closed

form and we propose an approximation to the posterior mode that is based on

variational inference [55, 157], which is more salable to the high feature dimen-
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sion characteristic of microbiome datasets. . Variational inference is often less

computationally difficult than Monte Carlo methods for evaluating the posterior

mode.

We illustrate our model capabilities through numerical experiments in simu-

lation and in a real world microbiome dataset that is composed of 21 different

studies[158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173,

174, 175, 176] curated by Lawrence Livermore National Laboratory (LLNL) staff

members. Each study from the data contains a collection of patients’ gut bacteria

sequencing data and the health condition of the patients. The sequencing data

undergo a clustering process to form Operational Taxonomic Units (OTUs), each

representing a group of similar sequences. These OTUs are then taxonomically

classified at 7 different levels depending on the resolution of the data. Their

relative abundances (counts) are subsequently quantified across samples from

different patients. These abundance data are further processed by centered log

ratio transform (CLRT) [177] to provide features for the machine learning model.

There are total 7 different taxon levels, and we take the union set of all the OTUs

for each taxon level to provide a consistent feature space. The taxon levels are:

Kingdom (11), Phylum (163), Class (313), Order (914), Family (2544), Genus (7885)

and Species (31518), where each number in the parentheses corresponds to the

feature dimension (i.e total number of OTUs). The health condition of each patient

is one-hot coded into one of the 11 disease: cirrhosis, inflammatory bowel disease,

diabetes, diarrhea, cancer, dermatologic, premature born, cardiovascular disease,

neurological disease, gastrointestinal infection and autoimmune. This maps the

studies of distinct diseases into different tasks.
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The proposed model is evaluated in comparison with other benchmark methods

including: logistic regression with sparsity penalty [178, 179], MTFL (Multitask

Feature Learning) [149] and MSSL (Multitask Sparsity Structure Learning) [151].

Our evaluation with simulated synthetic datasets show that the proposed ap-

proach has superior support recovery property when the underlying regression

coefficients share a common sparsity structure across different tasks. The proposed

model performs less well on the real microbiome data, likely due to heterogeneity

of the data (i.e different experimental objectives, laboratory setups, sequencing

equipments, patient demographics etc.), Nonetheless, we demonstrate the util-

ity of the method to extract informative taxons while providing well-calibrated

predictions with uncertainty quantification.

The chapter is organized as: Section 4.2 introduces the mathematical for-

mulation of the proposed hierarchical Bayesian model, Section 4.3 presents the

proposed variational inference algorithm to obtain the approximated posterior

distribution, Section 4.4 provides application of the methods to synthetic datasets

and the microbiome dataset, and Section 4.5 summarizes the findings from the

chapter and discusses future directions.

4.2 Hierarchical Bayesian Multitask Logistic Regression Model

4.2.1 Notations and Terminologies

We refer to each Operational Taxonomic Unit (OTU) as a feature variable, each

study is referred to as a task and diseased or healthy state of the individual is

referred to as a label.

We use bold upper case letters for matrices, bold lower case letters for vectors

and no bold lower case for scalars. We denote the observed OTU count data after
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centered log ratio transform as xi
t ∈ Rd together with its label yi

t ∈ {0, 1}, where d

corresponds to the number of features (i.e number of OTUs), t = 1, · · · , T denotes

the different tasks (i.e different studies), i = 1, · · · , nt denotes the different patient

subj per study, nt denotes the total number of patients per task, and yi
t reflect

whether the patient is diseased or non-diseased. For a given regression weight

matrix W ∈ RT×d for all the tasks, we denote wt ∈ Rd the row vector of W

correspond to each task across features, and w(j) ∈ RT the column vector of W

corresponds to each feature across tasks. The Hadamard (element-wise) product

of vectors a and b is denoted by a ◦ b, and diag denote the function map a vector

to a diagonal matrix with the vector as its diagonal entries.

4.2.2 Hierarchy Bayesian Multitask Logistic Regression Model

Though the number of bacterial species are in the order of trillions on earth, it

is well known that only a relative small number of bacteria are responsible for the

majority of the bacterial infections in humans [180]. Hence our model assumes

that only a few of the bacteria species are useful for the prediction task, where

we impose sparsity on the regression coefficient through a Bernoulli-Gaussian

distribution (wt ◦ z) [181, 156], where wt control the magnitude of the effects and

z controls the sparsity. This compound prior enforces some of the weights to be

exactly zero, implying some of the bacteria species are irrelevant for predicting

the health of patient. The sparsity term z are independently drawn from the

same Bernoulli distribution with parameter θ. Note z does not depend on the

specific task, this implies the sparsity pattern is shared across different tasks,

which reflect the belief that there are few bacteria species are useful for prediction

across all tasks. A hyper prior for θ is given by the beta distribution, which
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utilize the conjugate property to control the overall sparsity level of the model.

Further, to enforce the information sharing across different tasks, the row of

W , denoted by w(j) are assumed to be i.i.d draws from a multivariate Gaussian

distribution with mean 0 and covariance Σ0. A Wishart prior is proposed for this

shared covariance matrix to provide a way to utilized expert knowledge about

the underling relationships among the studies, and this enables us to exploit

the Wishart-normal conjugacy to obtain efficient inference later. The proposed

conditional model can be summarized:

yi
t|wt, z; xi

t
ind∼ Bernoulli

(
sigmoid

(〈
(wt ◦ z) , xi

t

〉))
∀i = 1, · · · nt, ∀t = 1, · · · T,

zj|θ
i.i.d∼ Bernoulli (θ) ∀j = 1, · · · d,

θ ∼ Beta (α0, β0) ,

w(j)|Σ0
i.i.d∼ N (0, Σ0) ∀j = 1, · · · d,

Σ−1
0 ∼Wishart (v0, V0) .

where α0, β0, v0, V0 are hyperparameters selected by the experimenter. Smaller

value of the ratio α0
α0+β0

corresponds to a prior belief of fewer informative features

while the magnitude α0 controls the confidence of prior belief, and v0, V0 reflects

the prior knowledge about the covariance structure of the regression coefficient

W across different tasks.

The proposed model leads to a log conditional probability, up to an unimpor-
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tant constant:

log (p (Y , W , Σ0, θ | X; v0, V0, α0, β0)) = −
1
2

tr
(

V−1
0 Σ−1

0

)
+

v0 + d− T − 1
2

log det
(

Σ−1
0

)
− v0

2
log det (V0) + (α0 − 1) log (θ) + (β0 − 1) log (1− θ)

+ log Γ (α0 + β0)− log Γ (α0)− log Γ (β0)

−∑
j

1
2

〈
w(j), Σ−1

0 w(j)

〉
+ ∑

t
∑

i
yi

t

(〈
(wt ◦ z) , xi

t

〉)
−∑

t
∑

i
log
(

exp
(〈

(wt ◦ z) , xi
t

〉)
+ 1
)

+

(
∑

j
zj

)
log θ +

(
d−∑

j
zj

)
log (1− θ) .(4.1)

where Γ denote the gamma function.

4.3 Variational Inference

With the combination of the logistic function and the hierarchical structure, in-

ference from the exact posterior distribution of the conditional model is intractable

since the posterior distribution is not available in closed form. We resort to a

variational approach [55, 157] where we approximate the posterior distribution

with a simpler distribution, and the approximation is iteratively refined. We refer

interested reader to [55] for a comprehensive review on variational inference (VI)

as a general approach for Bayesian inference.

Section 4.3.1 introduces the mean-field approximation used to approximate the

posterior distribution along with the variational objective function, and Section

4.3.2 summarize the optimization algorithm based on coordinate ascent [57].

4.3.1 Mean-Field Approximation and Variational Lower Bound

Mean field approximation is a prevalent choice of the approximation family,

because it is expressive enough to approximate the complex posteriors, and simple
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enough to lead to tractable computations [57].

In this chapter, we propose to approximate the true posterior of the proposed

model with:

(4.2) q(θ, W , Σ0, z) = q (θ; α, β) q
(

Σ−1
0 ; v, V

)
∏

j
q
(
zj; ϕj

)
q(w(j); m(j), Σj).

Where q (θ; α, β) is a beta distribution with parameters (α, β), q
(
zj; ϕj

)
is a

Bernoulli distribution with parameters ϕi, q
(

Σ−1
0 ; v, V

)
is a Wishart distribution

with parameters (v, V), and q
(

w(j); m(j), Σj

)
is a multivariate Gaussian distribu-

tion with mean m(j) and covariance Σj for j = 1, . . . , d.

The optimization objective of variational inference (VI) is to minimize the

KL-divergence between the approximation Eqn. 4.2 and the true posterior by

maximize evidence lower bound(ELBO):

ELBO (q) = Eq [log f (X, Y , θ, z, W , Σ0)] + Entropy (q)

= −1
2

tr
(

vV−1
0 V

)
+

v0 + d
2

log det (V)

+
v0 + d− v

2
ψT

(v
2

)
+

vT
2

+ ln ΓT

(v
2

)
+

(
α0 + ∑

j
ϕj − α

)
ψ (α) +

(
β0 + d−∑

j
ϕj − β

)
ψ (β)

+ ln B (α, β) + (α + β− d− α0 − β0)ψ (α + β)

− 1
2 ∑

j
tr
(

vV
(

m(j)m
⊤
(j) + Σj

))
+ ∑

t
∑

i
yi

t

(〈
(mt ◦ϕ) , xi

t

〉)
−∑

t
∑

i
EW ,z∼q

[
log
(

exp
(〈

(wt ◦ z) , xi
t

〉)
+ 1
)]

+
1
2 ∑

j
log det

(
Σj
)
−∑

j
ϕj log

(
ϕj
)
−∑

j

(
1− ϕj

)
log
(
1− ϕj

)
.(4.3)

where ψ is the digamma function, ψT is the multivariate digamma function
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and γT is the multivariate gamma function. Since the expectations of the sig-

moid functions do not admit closed form solutions, we approximate the sigmoid

functions by quadratic lower bounds:

− log
(

exp
(〈

(wt ◦ z) , xi
t

〉)
+ 1
)
≥ − log

(
exp

(〈(
w′t ◦ z′

)
, xi

t

〉)
+ 1
)

−
〈

xi
t, wt ◦ z−w′t ◦ z′

〉
exp

(〈
(w′t ◦ z′) , xi

t
〉)

+ 1

− 1
8
(
wt ◦ z−w′t ◦ z′

)⊤ xi
t

(
xi

t

)⊤ (
wt ◦ z−w′t ◦ z′

)
.(4.4)

for i = 1, . . . , nt, t = 1, . . . , T, and w′t, z′ are deterministic reference points

of choice. This type of approximations has been used to design majorizor-

minimization (MM) algorithms for the logistic regression problem [182, 183].

The resulting approximation is, up to a constant:

−∑
t

∑
i

EW ,z∼q

[
log
(

exp
(〈

(wt ◦ z) , xi
t

〉)
+ 1
)]
≥ −∑

t
∑

i
log
(

exp
(〈(

w′t ◦ z′
)

, xi
t

〉)
+ 1
)

+∑
t

∑
i

〈
w′t ◦ z′, xi

t
〉

exp
(
−
〈
(w′t ◦ z′) , xi

t
〉)

+ 1

−1
8 ∑

t
∑

i

〈
w′t ◦ z′, xi

t

〉2

−∑
t

∑
i

1
exp

(
−
〈
(w′t ◦ z′) , xi

t
〉)

+ 1

〈
xi

t, (mt ◦ϕ)
〉

+
1
4 ∑

t
∑

i

(〈
w′t ◦ z′, xi

t

〉) (〈
mt ◦ϕ, xi

t

〉)
−1

8 ∑
t

∑
i

(〈
mt ◦ϕ, xi

t

〉)2

+
1
8 ∑

t
∑

j

(
m2

t,j
(
ϕj − 1

)
−
(
Σj
)

t,t

)
ϕj ∑

i

(
xij

t

)2
.(4.5)

There are other alternative approaches using different lower bounds [184, 185],

chapter 10.6 of [57], but they require additional variational parameters scale with

the feature dimension (d), which complicates the variational computations.
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4.3.2 Coordinate Ascent Variational Inference (CAVI)

Coordinate ascent variational inference (CAVI) [57] is a optimization technique

where we optimize one set of the variational parameters at a time while holding

the others fixed.

One useful result (Equation 18 of [55]) states that if we are to approximate

a general posterior distribution p (ξ | data) with a mean-field approximation

q (ξ) := ∏j qj
(
ξ j
)
, the CAVI update for j-th latent variable ξ j (i.e the optimal

solution q⋆j
(
ξ j
)
) is proportional to the exponentiated conditional expected log of

the joint:

(4.6) q⋆j ∝ exp
(

Eξ−j∼q−j

[
log
(

p
(

ξ j, ξ−j | data
))])

.

where ξ−j corresponds to all but the j-th latent variable.

The resulting Coordinate Ascent Variational Inference (CAVI) algorithm is

summarized in Algorithm. 2, and see section 4.6.1 for details of the derivations

using Eqn. 4.6.

Algorithm 2 CAVI for Bayesian Multitask Sparse Logistic Regression

1: procedure CAVI(Inputs:
(

xi
t, yi

t
)

t=1,···T,i=1,···nt
)

2: for all itr = 1, · · · , Niter do
3: for all j = 1, · · · d do
4: Σj ← by Eqn. 4.7
5: end for
6: for all j = 1, · · · , d do
7: m(j) ← by Eqn. 4.9
8: end for
9: for all j = 1, · · · , d do

10: ϕj ← by Eqn. 4.11

11: end for
12: α← α0 + ∑j ϕj,
13: β← β0 + d−∑j ϕj,
14: θ ← α

α+β ,
15: v← v0 + d,

16: V ←
(

V−1
0 + ∑j m(j)m⊤(j) + Σj

)−1

17: end for
18: end procedure
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4.4 Experiments

In this section, we evaluate the performance of our proposed method on both

simulated data and real microbiome data pooled from multiple studies [158, 159,

160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176],

and we compare it with following methods:

• Single-task Logistic Classifier with sparsity penalty (STL-LC) [178, 179]: this

is a single-task model, where we fit independent logistic models to each

task separately. This is an extension of standard LASSO into the binary

classification setting.

• Pooled Logistic Classifier with sparsity penalty (Pooled-LC): we train a single

logistic regression model for all tasks.

• MTFL (Multitask Feature Learning) [149]: this is an optimization based ap-

proach to multitask learning based on ℓ2,1-norm regularization. The proposed

method can be seen as a Bayesian Hierarchical extension, and the difference

in modeling is how the sparsity pattern is encouraged: we use a overpa-

rameterized Bernoulli-Gaussian model, which has better support recovery

properties [156].

• MSSL (Multitask Sparsity Structure Learning) [151]: this is an optimization

based multitask learning approach, where the imposed sparsity structure

is on the precision (inverse covariance matrix) of the regression coefficients

across tasks. The optimization problem of this formulation is equivalent to

the graphical lasso problem [186, 65] for covariance estimation.
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Model Selections: For all the methods, we employ a model selection strategy

based on cross-entropy loss on the validation dataset to select the hyperparameters

(e.g α0, β0, v0, V0 of the proposed Bayesian approach). Specifically, we use 10

repeated runs of stratified cross-validation [187] since we have limited number of

samples and class labels are imbalanced.

Evaluation Metrics: the microbiome dataset that we used has imbalanced class

labels, i.e there are more healthy patients than diseased patients. Thus we use

following metrics to quantify the performance of predictive models: accuracy,

balanced accuracy, averaged precision, F1 score, F2 score, Matthews correlation

coefficient (MCC), and area under the curve (AUC). Table 4.1 summarizes the

definitions of these metrics.

Table 4.1 Definitions of classification metrics and the intermediate variables given ground truth
labels y and predicted labels ŷ. ∧ denotes the ”and” operation, and 1(·) is the indicator function,
which is 1 if the condition inside is true and 0 otherwise.

Metric/Immediate Variable Definition
TP (True Positives) TP = ∑N

i=1 1(yi = 1∧ ŷi = 1)
TN (True Negatives) TN = ∑N

i=1 1(yi = 0∧ ŷi = 0)
FP (False Positives) FP = ∑N

i=1 1(yi = 0∧ ŷi = 1)
FN (False Negatives) FN = ∑N

i=1 1(yi = 1∧ ŷi = 0)
Precision TP

TP+FP
Recall TP

TP+FN
Accuracy Accuracy(y, ŷ) = TP+TN

N

Balanced Accuracy Balanced Accuracy(y, ŷ) = 1
2

(
TP

TP+FN + TN
TN+FP

)
Average Precision Integral of precision over all recall levels
F1 Score F1 Score(y, ŷ) = 2× Precision×Recall

Precision+Recall
F2 Score F2 Score(y, ŷ) = 5× Precision×Recall

4×Precision+Recall

MCC MCC(y, ŷ) = (TP×TN)−(FP×FN)√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

AUC Area under the ROC curve plotting TP rates vs. FP
rates
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4.4.1 Synthetic Datasets

We generate synthetic datasets to examine whether our algorithm is able to: 1)

recover the support of the regression coefficients that correspond to informative

features for the prediction, which are evaluated by the metrics from Table 4.1; 2)

recover the ground truth regression coefficients (up to normalization), which are

evaluated by cosine distance (i.e one minus the normalized inner product).

To mimic various characteristics of a real world dataset, we generate six datasets

with varying sparsity level (the common support of regression coefficients across

tasks) and class imbalance (whether sample sizes across different tasks are of the

same magnitude). Additional details of each dataset are summarized in Table 4.2.

Support Recovery: We evaluate the support recovery of the algorithms by

turning the support recovery problem into a binary prediction problem. The result

is summarized in Table 4.3. The proposed Bayesian method is the best performing

algorithm in most of the metrics across all settings. In particular, when the ground

truth regression coefficients have a sparse support, the proposed method has a

close to perfect recovery (98.8%).

Weight Recovery: We evaluate the prediction performance of the algorithm by

assess how well the algorithms can recover the ground truth regression coefficients.

Since the logistic prediction is scale invariant, we evaluate the results by the cosine

distance. The result is summarized in Table 4.4. The proposed Bayesian method is

the best performing algorithm in all but the dense case.
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Table 4.2 Summary of the simulated dataset, where ∼ Pois means the number of samples is Poisson
distributed, and ∼ NB means the number of sample follow a negative binomial distribution. For
all the simulation the number of features is 100 and number of tasks is 10. For the unbalanced
datasets, We add all the sample sizes by 6 to ensure that both positive samples and negative
samples are present across all tasks. Both settings have an expected sample size 30, with the
imbalanced case has more variations of sample sizes among different tasks. The θ parameter
corresponds to the expected percentage of the predictive features.

Dense (θ = 0.8) Sparse (θ = 0.2) Ultra Sparse (θ = 0.05)
Balanced ∼ Pois (24) + 6 dataset1 dataset2 dataset3

Unbalanced ∼ NB (1, 0.04) + 6 datasett4 dataset5 dataset6

Table 4.3 Summary of the support recovery results for the simulated data. The bold number means
the corresponding method is the best performing algorithm for the given metrics and dataset, and
the values in parentheses represent standard deviations computed over 10 different runs. The
proposed Bayesian approach outperforms the benchmark methods in all evaluation metrics when
there is a shared sparsity structure across regression coefficients of different tasks. Both MSSL and
MTFL prioritize the prediction performance in the cross-validation step which results in complete
dense solutions (i.e all regression coefficients are non-zero), hence they have identical results.

Dataset Metrics BayesMTL MTFL MSSL STL-LC Pooled-LC

dataset1
(dense,
balanced)

Accuracy 0.322 (0.06) 0.793 (0.05) 0.793 (0.05) 0.688 (0.05) 0.71 (0.04)
Balanced Accuracy 0.565 (0.03) 0.5 (0) 0.5 (0) 0.525 (0.05) 0.52 (0.03)
Average Precision 0.819 (0.05) 0.793 (0.05) 0.793 (0.05) 0.803 (0.04) 0.800 (0.05)

F1 Score 0.261 (0.06) 0.884 (0.03) 0.884 (0.03) 0.801 (0.04) 0.821 (0.03)
F2 Score 0.183 (0.05) 0.950 (0.01) 0.950 (0.01) 0.800 (0.05) 0.834 (0.03)

AUC 0.565 (0.03) 0.5 (0) 0.5 (0) 0.525 (0.05) 0.520 (0.03)
MCC 0.156 (0.06) 0 (0) 0 (0) 0.0565 (0.09) 0.0427 (0.07)

dataset2
(sparse,
balanced)

Accuracy 0.882 (0.04) 0.225 (0.03) 0.225 (0.03) 0.438 (0.08) 0.364 (0.02)
Balanced Accuracy 0.768 (0.05) 0.5 (0) 0.5 (0) 0.616 (0.05) 0.548 (0.04)
Average Precision 0.597 (0.10) 0.225 (0.03) 0.225 (0.03) 0.279 (0.06) 0.244 (0.02)

F1 Score 0.681 (0.09) 0.367 (0.03) 0.367 (0.03) 0.431 (0.07) 0.383 (0.03)
F2 Score 0.602 (0.09) 0.590 (0.03) 0.590 (0.03) 0.634 (0.06) 0.579 (0.04)

AUC 0.768 (0.05) 0.5 (0) 0.5 (0) 0.616 (0.05) 0.548 (0.04)
MCC 0.638 (0.10) 0 (0) 0 (0) 0.227 (0.09) 0.104 (0.07)

dataset3
(ultra
sparse,
balanced)

Accuracy 0.988 (0.02) 0.0350 (0.01) 0.0350 (0.01) 0.437 (0.08) 0.199 (0.04)
Balanced Accuracy 0.947 (0.06) 0.5 (0) 0.5 (0) 0.708 (0.04) 0.526 (0.09)
Average Precision 0.801 (0.20) 0.035 (0.01) 0.035 (0.01) 0.0584 (0.01) 0.0372 (0.01)

F1 Score 0.876 (0.13) 0.0674 (0.02) 0.0674 (0.02) 0.110 (0.02) 0.070 (0.02)
F2 Score 0.886 (0.12) 0.152 (0.04) 0.152 (0.04) 0.235 (0.05) 0.154 (0.04)

AUC 0.947 (0.06) 0.5 (0) 0.5 (0) 0.708 (0.04) 0.526 (0.09)
MCC 0.879 (0.13) 0 (0) 0 (0) 0.154 (0.02) 0.0199 (0.08)

dataset4
(dense,
unbalanced)

Accuracy 0.441 (0.12) 0.795 (0.04) 0.795 (0.04) 0.689 (0.09) 0.693 (0.04)
Balanced Accuracy 0.584 (0.06) 0.5 (0) 0.5 (0) 0.554 (0.07) 0.517 (0.04)
Average Precision 0.827 (0.04) 0.795 (0.04) 0.795 (0.04) 0.814 (0.04) 0.801 (0.04)

F1 Score 0.483 (0.16) 0.885 (0.02) 0.885 (0.02) 0.794 (0.08) 0.808 (0.03)
F2 Score 0.393 (0.15) 0.951 (0.01) 0.951 (0.01) 0.788 (0.12) 0.813 (0.04)

AUC 0.584 (0.06 ) 0.5 (0) 0.5 (0) 0.554 (0.07) 0.517 (0.04)
MCC 0.147 (0.09) 0 (0) 0 (0) 0.118 (0.12) 0.039 (0.08)

dataset5
(sparse,
unbalanced)

Accuracy 0.796 (0.07 ) 0.219 (0.04) 0.219 (0.04) 0.451 (0.07) 0.334 (0.03)
Balanced Accuracy 0.783 (0.06) 0.5 (0) 0.5 (0) 0.626 (0.036) 0.541 (0.04)
Average Precision 0.472 (0.13) 0.219 (0.04) 0.219 (0.04) 0.275 (0.05) 0.234 (0.03)

F1 Score 0.625 (0.1) 0.358 (0.05) 0.358 (0.05) 0.427 (0.06) 0.370 (0.04)
F2 Score 0.694 (0.05) 0.579 (0.06) 0.579 (0.06) 0.630 (0.05) 0.569 (0.04)

AUC 0.783 (0.06) 0.5 (0) 0.5 (0) 0.626 (0.04) 0.541 (0.04)
MCC 0.516 (0.13) 0 (0) 0 (0) 0.240 (0.05) 0.086 (0.08)

dataset6
(ultra
sparse,
unbalanced)

Accuracy 0.917 (0.10) 0.059 (0.0239) 0.059 (0.0239) 0.478 (0.07) 0.21 (0.04)
Balanced Accuracy 0.905 (0.08) 0.5 (0) 0.5 (0) 0.715 (0.05) 0.553 (0.03)
Average Precision 0.598 (0.02) 0.059 (0.02) 0.059 (0.02) 0.097 (0.03) 0.0646 (0.02)

F1 Score 0.699 (0.27) 0.11 (0.04) 0.11 (0.04) 0.176 (0.05) 0.120 (0.04)
F2 Score 0.763 (0.20) 0.233 (0.08) 0.233 (0.08) 0.343 (0.08) 0.246 (0.07)

AUC 0.905 (0.08) 0.5 (0) 0.5 (0) 0.715 (0.05) 0.553 (0.03)
MCC 0.704 (0.26) 0 (0) 0 (0) 0.198 (0.03) 0.063 (0.03)
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Table 4.4 Summary of the weights recovery measured in cosine distance. The cosine distance
is bounded between 0 and 2 with 0 means perfect recovery. The proposed Bayesian approach
outperforms the benchmark methods in all evaluation metrics when there is a shared sparsity
structure across regression coefficients of different tasks.

Dataset BayesMTL MTFL MSSL STL-LC Pooled-LC
dataset1
(dense,
bal-
anced)

0.736 (0.06) 0.561 (0.02) 0.554 (0.02) 0.735 (0.02) 0.983 (0.04)

dataset2
(sparse,
bal-
anced)

0.341 (0.09) 0.566 (0.01) 0.563 (0.01) 0.560 (0.05) 1.02 (0.05)

dataset3
(ultra
sparse,
bal-
anced)

0.098 (0.04) 0.589 (0.03) 0.598 (0.02) 0.257 (0.04) 0.995 (0.12)

dataset4
(dense,
unbal-
anced)

0.670 (0.10) 0.582 (0.08) 0.576 (0.05) 0.736 (0.07 ) 1.02 (0.03)

dataset5
(sparse,
unbal-
anced)

0.456 (0.11) 0.597 (0.08) 0.576 (0.04) 1.04 (0.06) 0.571 (0.09)

dataset6
(ultra
sparse,
unbal-
anced)

0.223 (0.12) 0.651 (0.05) 0.612 (0.04) 0.353 (0.11) 1.07 (0.10)

4.4.2 Microbiome Data

Our goal is two folds: 1) show that multitask learning on the one-hot coded

vector of diseases can perform the disease classification with uncertainty quan-

tification 2) identify the common bacteria that are most predictive for a patient’s

health.

Prediction Performance: analogous to previous subsection, we evaluate the

prediction performance through various metrics from Table 4.1, and the results are

summarized in Table 4.5. Due to the heterogeneous nature of the data (i.e pooled
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from studies with different experimental objectives, laboratory setups, sequencing

equipments, patient demographics etc.), we do not see an improvement of the

multitask learning models. However, the proposed model is the most consistent

approach that provide sparse solutions.

Feature Importance: we assign feature importance to each of the OTUs by

combining the magnitude of regression coefficient ({wt}) and the sparsity param-

eters (z). From the estimated posterior distribution, we draw samples to explore

the full distribution of the feature importance. The most important features will

corresponds to the features with consistent high importance weights across draws.

The result is summarized in Fig. 4.2. The proposed model learns a sparse set

of features shared across different datasets from the data as reflected by colored

strips.

Goodness of fit: We evaluate the goodness of fit of the proposed method

through calibration curve [188], which plots the predicted probability against

the observed labels. For a well calibrated probabilistic model, among all the

samples model predicted with probability p% being healthy, close to p% of them

will indeed be healthy. The calibration results are summarized in Fig. 4.1 for

both the training data and test data. The proposed Bayesian approach provides

additional uncertainty quantification about the predicted probabilities. Since

the proposed model is probabilistic, it provides well calibrated results. The

performance degrades at the boundary values for the test data, which indicate the

choice of logit function as a link function is resulting in over-confident predictions.

We discuss possible extensions in Section 4.5.
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(a) Predicted probabilities on training data.

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

Pe
rc

en
t

(b) Predicted probabilities on test data.
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(c) Calibration curves for the training data and the test
data with 90% marginal credible intervals.

Figure 4.1: Calibration analysis for the proposed model on the Order Taxon level. Fig. (a) and
Fig. (b) show the histograms of the predicted probabilities and training and test data respectively.
Due the choice of logit as link function, the predicted probabilities are concentrated around the
boundaries. Fig. (c) show the calibration curves of the predictions from training and test data. The
model achieves near perfect calibration on the training data, and the degradation of performance
on the test data at the boundary values indicates that the logit function as a link function is
resulting in over-confident predictions.
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Table 4.5 Summary of the prediction performance. The bold number means the corresponding
method is the best performing algorithm for the given metrics and taxon level, and the values
in parentheses represent standard deviations computed over 5 different runs. Due to the het-
erogeneous nature of the data, we do not see an improvement of the proposed approach over
single-tasked model. However, the proposed approach is the only multitask method that provides
a sparse solution i.e identify common bacteria across studies of the same disease category that are
informative for the predictions.

Taxon Levels Metrics BayesMTL MTFL MSSL Pooled-LC STL-LC

Kingdom

Accuracy 0.679 (0.0131) 0.695 (0.0145) 0.699 (0.0198) 0.582 (0.0181) 0.63 (0.021)
Balanced Accuracy 0.602 (0.012) 0.619 (0.0114) 0.64 (0.0165) 0.54 (0.0184) 0.619 (0.0117)
Average Precision 0.636 (0.00747) 0.645 (0.00563) 0.657 (0.00901) 0.585 (0.00857) 0.635 (0.0103)

F1 Score 0.674 (0.0253) 0.674 (0.013) 0.69 (0.023) 0.698 (0.0112) 0.576 (0.036)
F2 Score 0.696 (0.0244) 0.688 (0.0172) 0.701 (0.0272) 0.807 (0.0126) 0.591 (0.0467)

AUC 0.602 (0.012) 0.619 (0.0114) 0.64 (0.0165) 0.54 (0.0184) 0.619 (0.0117)
MCC 0.222 (0.0253) 0.255 (0.0294) 0.296 (0.0466) 0.104 (0.0446) 0.229 (0.0264)

Sparsity Ratio 0.246 (0.0315) 0.534 (0.0124) 0.542 (0.00843) 0.982 (0.0364) 0.271 (0.0406)

Phylum

Accuracy 0.699 (0.0296) 0.722 (0.0132) 0.677 (0.00977) 0.582 (0.0304) 0.655 (0.0211)
Balanced Accuracy 0.647 (0.0286) 0.696 (0.0161) 0.674 (0.0164) 0.563 (0.0303) 0.631 (0.0141)
Average Precision 0.666 (0.0206) 0.695 (0.0137) 0.673 (0.00766) 0.599 (0.0157) 0.651 (0.0124)

F1 Score 0.713 (0.0333) 0.733 (0.0145) 0.68 (0.00808) 0.664 (0.0207) 0.595 (0.0555)
F2 Score 0.732 (0.0308) 0.739 (0.0136) 0.674 (0.0103) 0.725 (0.0222) 0.611 (0.0609)

AUC 0.647 (0.0286) 0.696 (0.0161) 0.674 (0.0164) 0.563 (0.0303) 0.631 (0.0141)
MCC 0.309 (0.0563) 0.396 (0.0338) 0.335 (0.0264) 0.134 (0.0647) 0.266 (0.0273)

Sparsity Ratio 0.215 (0.0518) 0.492 (0.0324) 0.564 (0.0159) 0.883 (0.0254) 0.114 (0.0219)

Class

Accuracy 0.703 (0.0168) 0.679 (0.0263) 0.645 (0.0133) 0.624 (0.00985) 0.717 (0.0118)
Balanced Accuracy 0.642 (0.0163) 0.68 (0.0282) 0.652 (0.0179) 0.612 (0.0121) 0.677 (0.0179)
Average Precision 0.655 (0.00783) 0.682 (0.0152) 0.658 (0.00646) 0.624 (0.00459) 0.683 (0.0127)

F1 Score 0.699 (0.0172) 0.68 (0.0276) 0.655 (0.016) 0.689 (0.00774) 0.671 (0.0359)
F2 Score 0.725 (0.0206) 0.681 (0.0266) 0.649 (0.0167) 0.743 (0.0143) 0.68 (0.037)

AUC 0.642 (0.0163) 0.68 (0.0282) 0.652 (0.0179) 0.612 (0.0121) 0.677 (0.0179)
MCC 0.3 (0.0327) 0.351 (0.0521) 0.291 (0.0315) 0.236 (0.0278) 0.354 (0.0387)

Sparsity Ratio 0.179 (0.0362) 0.458 (0.029) 0.572 (0.0154) 0.847 (0.0214) 0.0963 (0.0164)

Order

Accuracy 0.699 (0.0242) 0.628 (0.0978) 0.625 (0.0176) 0.622 (0.0151) 0.709 (0.0205)
Balanced Accuracy 0.653 (0.028) 0.641 (0.0731) 0.636 (0.0183) 0.606 (0.0113) 0.669 (0.0167)
Average Precision 0.66 (0.0141) 0.655 (0.0459) 0.648 (0.00811) 0.625 (0.00612) 0.679 (0.00903)

F1 Score 0.703 (0.023) 0.544 (0.272) 0.641 (0.0131) 0.678 (0.0197) 0.666 (0.0401

F2 Score 0.725 (0.0246) 0.543 (0.272) 0.638 (0.0103) 0.723 (0.0286) 0.681 (0.0456)
AUC 0.653 (0.028) 0.641 (0.0731) 0.636 (0.0183) 0.606 (0.0113) 0.669 (0.0167)
MCC 0.318 (0.0658) 0.276 (0.143) 0.26 (0.0312) 0.217 (0.026) 0.342 (0.038)

Sparsity Ratio 0.132 (0.00943) 0.462 (0.236) 0.592 (0.0188) 0.833 (0.059) 0.102 (0.0576)

Family

Accuracy 0.683 (0.0121) 0.651 (0.00838) 0.64 (0.0143) 0.634 (0.0211) 0.704 (0.0384)
Balanced Accuracy 0.637 (0.0103) 0.654 (0.013) 0.649 (0.014) 0.62 (0.0242) 0.691 (0.0261)
Average Precision 0.655 (0.00972) 0.663 (0.00527) 0.656 (0.00786) 0.634 (0.0156) 0.694 (0.0175)

F1 Score 0.682 (0.0182) 0.635 (0.0434) 0.651 (0.0112) 0.688 (0.0174) 0.636 (0.062))
F2 Score 0.698 (0.0193) 0.636 (0.0505) 0.646 (0.0114) 0.731 (0.0184) 0.646 (0.061)

AUC 0.637 (0.0103) 0.654 (0.013) 0.649 (0.014) 0.62 (0.0242) 0.691 (0.0261)
MCC 0.279 (0.0177) 0.301 (0.0278) 0.286 (0.0248) 0.244 (0.0462) 0.383 (0.0528)

Sparsity Ratio 0.0974 (0.0442) 0.539 (0.0588) 0.611 (0.0256) 0.783 (0.115) 0.106 (0.0597)

Genus

Accuracy 0.697 (0.01) 0.662 (0.0147) 0.658 (0.0111) 0.656 (0.0121) 0.769 (0.0104)
Balanced Accuracy 0.663 (0.00891) 0.665 (0.0174) 0.662 (0.0131) 0.652 (0.0199) 0.693 (0.0164)
Average Precision 0.671 (0.00646) 0.67 (0.00739) 0.669 (0.00666) 0.654 (0.0131) 0.7 (0.0141)

F1 Score 0.706 (0.00669) 0.656 (0.0379) 0.665 (0.011) 0.695 (0.00896) 0.674 (0.0491)
F2 Score 0.726 (0.0138) 0.652 (0.0392) 0.656 (0.00992) 0.726 (0.00819) 0.688 (0.0483)

AUC 0.663 (0.00891) 0.665 (0.0174) 0.662 (0.0131) 0.652 (0.0199) 0.693 (0.0164)
MCC 0.331 (0.0193) 0.321 (0.0352) 0.313 (0.0246) 0.3 (0.039) 0.385 (0.0301)

Sparsity Ratio 0.0956 (0.0799) 0.467 (0.0931) 0.621 (0.0185) 0.894 (0.119) 0.136 (0.0376)

Species

Accuracy 0.693 (0.0159) 0.661 (0.022) 0.709 (0.0195) 0.669 (0.0135) 0.725 (0.0316)
Balanced Accuracy 0.673 (0.0165) 0.664 (0.0202) 0.701 (0.0211) 0.667 (0.0104) 0.705 (0.0162)
Average Precision 0.676 (0.00819) 0.671 (0.0134) 0.705 (0.013) 0.669 (0.00927) 0.716 (0.00852)

F1 Score 0.695 (0.0183) 0.648 (0.0715) 0.705 (0.0205) 0.691 (0.0144) 0.694 (0.0366)
F2 Score 0.704 (0.0241) 0.651 (0.0735) 0.698 (0.0225) 0.702 (0.0205) 0.71 (0.0454)

AUC 0.673 (0.0165) 0.664 (0.0202) 0.701 (0.0211) 0.667 (0.0104) 0.705 (0.0162)
MCC 0.348 (0.0286) 0.324 (0.0363) 0.395 (0.0386) 0.333 (0.0241) 0.41 (0.0342)

Sparsity Ratio 0.134 (0.077) 0.638 (0.0789) 0.579 (0.0285) 0.797 (0.142) 0.194 (0.0865)
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(a) Cirrhosis (b) Autoimmune (c) Diabetes (d) Diarrhea

(e) Cancer (f) Dermatologic (g) Premature Born (h) Cardiovascular Disease

(i) Neurological Disease (j) Gastrointestinal Infection (k) Bowel Disease

Figure 4.2: Feature importance weight visualization across 11 different disease category of Order
taxon level. The x-axis corresponds to different samples draw from the posterior distribution and
the y-axis correspond to different OTUs. The gradation from white to black for a variable’s color
corresponds to its increasing importance weight, and the darker shaded horizontal lines represent
the sparse features selected by the algorithm.

4.5 Conclusion

In this chapter a hierarchical Bayesian multitask logistic regression model is

proposed to perform human healthy conditions from multiple related human gut

bacteria abundance data. The model is designed to select common informative

features across different tasks through the built-in sparsity structure. We derive

a computationally efficient inference algorithm based on variational inference.

Our simulation studies show that the proposed approach excels in situations

when there are shared sparsity structures of the regression coefficients across the

different tasks. Our experiments on a real world dataset pooled from multiple
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studies demonstrate the utility of the method to extract informative taxons while

providing well-calibrated predictions with uncertainty quantification.

There are several directions for future work. One direction is to replace the logit

function with other link functions (e.g a probit link function) that have flatter tails

so the model is less prone to overconfidence. Second direction is to extend our

model to multi-label classification problems, where each task contains multiple

binary predictions (e.g diagnosis of different diseases on the same patient). This

generalization is of particular interests to the human health prediction application

considered in this chapter, since the diseases are not mutually exclusive. Another

related extension is to consider the multiclass classification problem, where each

task is a classification problem with more than 2 labels (e.g different stages of a

disease).

4.6 Appendix

4.6.1 CAVI update derivation

This subsection includes the derivations of CAVI updates for Algorithm. 2.

Update for α, β: Based on Eqn. 4.6, the exponentiated conditional expectation of

all the parameters except θ up to a constant scaling factor:

q⋆ (θ) ∝ exp

(
(α0 − 1) log θ + (β0 − 1) log (1− θ) +

(
∑

j
ϕj

)
log θ +

(
d−∑

j
ϕj

)
log (1− θ)

)

= exp

((
α0 − 1 + ∑

j
ϕj

)
log θ +

(
β0 + d−∑

j
ϕj − 1

)
log (1− θ)

)
.
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This implies q⋆ (θ) follows a beta distribution with parameters:

α = α0 + ∑
j

ϕj,

β = β0 + d−∑
j

ϕj.

Update for v and V : Based on Eqn. 4.6, the exponentiated conditional expectation

of all the parameters except Σ−1
0 up to a constant scaling factor:

q⋆
(

Σ−1
0

)
∝ exp

(
−1

2
tr
(

V−1
0 Σ−1

0

))
− v0 + d− T − 1

2
log det

(
Σ−1

0

)
− 1

2
tr

(
Σ−1

0

(
∑

j
m(j)m

⊤
(j) + Σj

))
.

This implies q⋆
(

Σ−1
0

)
follow a Wishart distribution with parameters:

v = v0 + d,

V =

(
V−1

0 + ∑
j

m(j)m
⊤
(j) + Σj

)−1

.

Update for Σj: all the terms involve Σj in ELBO approximation (Eqn. 4.5):

−1
2

tr
(
vVΣj

)
− 1

8 ∑
t

(
Σj
)

t,t ϕj ∑
i

(
xij

t

)2
+

1
2

log det
(
Σj
)

.

Rewrite the second term:

−1
8

tr

(
Σj diag

([
∑i ϕj

(
xij

1

)2
, · · · , ∑i ϕj

(
xij

T

)2
]⊤))

.

Denote the diagonal matrix as X̃ j. For every j, we have a constrained optimization

problem:

max
Σ∈ST

++

log det (Σ)− tr
(

Σ

(
vV +

1
4

X̃ j

))
.

which admits a closed form solution:

(4.7) Σ⋆
j =

(
vV +

1
4

X̃ j

)−1

.

for j = 1, · · · d.
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Update for m(j): all the terms involved m(j) in ELBO approximation (Eqn. 4.5):

f
(

m(j)

)
:= −v

2

〈
m(j), Vm(j)

〉
− 1

8

〈
m(j), X̃ jm(j)

〉
+

〈
m(j),

[
ϕj ∑i

(
yi

1 − ỹi
1

)
xij

1 , · · · , ϕj ∑i

(
yi

T − ỹi
T

)
xij

T

]⊤〉

+
1
4

〈
m(j),

[
ϕj ∑i

〈
w′1 ◦ z′, xi

1
〉

xij
1 , · · · , ∑i

〈
w′T ◦ z′, xi

T
〉

xij
T

]⊤〉

− 1
4

〈
m(j),

[
ϕj ∑i xij

1 ∑l ̸=j ϕlxil
1 m1l, · · · , ϕj ∑i xij

T ∑l ̸=j ϕlxil
Tmtl

]⊤〉
.

This problem is quadratic with a negative definite Hessian matrix, hence by

stationary condition (i.e zero gradient) we have closed form updates:

m(j) = Σ⋆
j (

[
ϕj ∑i

(
yi

1 − ỹi
1

)
xij

1 , · · · , ϕj ∑i

(
yi

T − ỹi
T

)
xij

T

]⊤
+

1
4

[
ϕj ∑i

〈
w′1 ◦ z′, xi

1
〉

xij
1 , · · · , ∑i

〈
w′T ◦ z′, xi

T
〉

xij
T

]⊤
− 1

4

[
ϕj ∑i xij

1 ∑l ̸=j ϕlxil
1 m1l, · · · , ϕj ∑i xij

T ∑l ̸=j ϕlxil
Tmtl

]⊤
).(4.8)

For all j = 1 · · · d. When the reference point of quadratic lower bound w′ ◦ z′ is

set to be the mean parameters from the previous iteration, we can simplify Eqn.

4.9:

m(k+1)
(j) = Σ⋆

j (

[
ϕj ∑i

(
yi

1 − ỹi
1

)
xij

1 , · · · , ϕj ∑i

(
yi

T − ỹi
T

)
xij

T

]⊤
+

1
4

[
ϕ2

j ∑i

(
xij

1

)2
m(k)

1j , · · · , ∑i ϕ2
j ∑i

(
xij

T

)2
m(k)

Tj

]⊤
.

(4.9)
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Update for ϕj : All the terms involve ϕj in ELBO approximation (Eqn. 4.5):

f
(
ϕj
)

:= ϕj (ψ (α)− ψ (β)) + ϕj ∑
t

∑
i

(
yi

t − ỹi
t

)
mtjx

ij
t

+
ϕj

4 ∑
t

∑
i

(
mtjx

ij
t

) 〈
w′t ◦ z′, xi

t

〉
−

ϕj

4 ∑
t

∑
i

mtjx
ij
t ∑

l ̸=j
mtlϕlxil

t −
ϕj

8 ∑
t

((
Σj
)

tt + m2
tj

)
∑

i

(
xij

t

)2

− ϕj log
(
ϕj
)
−
(
1− ϕj

)
log
(
1− ϕj

)
.

Observe f
(
ϕj
)

is a smooth strictly concave function, so we can solve for ϕ⋆
j by

stationary condition (i.e 0 derivatives), which admit a closed form update:

ϕ⋆
j = σ (a) .(4.10)

where σ (t) := 1
exp(−t)+1 denote the sigmoid function, and:

a = ψ (α)− ψ (β) + ∑
t

∑
i

(
yi

t − ỹi
t

)
mtjx

ij
t

+
1
4 ∑

t
∑

i

(
mtjx

ij
t

) 〈
w′t ◦ z′, xi

t

〉
− 1

4 ∑
t

∑
i

mtjx
ij
t ∑

l ̸=j
mtlϕlxil

t −
1
8 ∑

t

((
Σj
)

tt + m2
tj

)
∑

i

(
xij

t

)2
.

When reference point of quadratic lower bound w′ ◦ z′ is set to be the mean

parameters from the previous iterations, Eqn. 4.10 is simplified:

ϕk+1
j = σ (a) .(4.11)

where

a = ψ (α)− ψ (β) + ∑
t

∑
i

(
yi

t − ỹi
t

)
mtjx

ij
t

+
1
8 ∑

t

(
m2

tj

(
2ϕ

(k)
j − 1

)
−
(
Σj
)

tt

)
∑

i

(
xij

t

)2
.
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4.6.2 Additional Experimental Results

This subsection include the additional experimental results on the microbiome

data from Section 4.4.2: Fig. 4.3 and Fig. 4.4 include the predicted probabilities

on training and test data for the other taxon levels respectively, Fig. 4.5 includes

the additional calibration curves, and Fig. 4.6, Fig. 4.7, Fig. 4.8, Fig. 4.9, Fig. 4.10

and Fig. 4.11 include feature sparsity plots for Kingdom, Phylum, Class, Genus

and Species respectively.
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Figure 4.3: Histogram of predicted probabilities on training data for different Taxon levels.
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Figure 4.4: Histogram of predicted probabilities on test data for different Taxon levels.
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Figure 4.5: Calibration curves for different Taxon levels.
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(a) Cirrhosis (b) Autoimmune (c) Diabetes (d) Diarrhea

(e) Cancer (f) Dermatologic (g) Premature Born (h) Cardiovascular Disease

(i) Neurological Disease (j) Gastrointestinal Infection (k) Bowel Disease

Figure 4.6: Feature importance weight visualization across 11 different disease category of
Kingdom taxon level.
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(a) Cirrhosis (b) Autoimmune (c) Diabetes (d) Diarrhea

(e) Cancer (f) Dermatologic (g) Premature Born (h) Cardiovascular Disease

(i) Neurological Disease(j) Gastrointestinal Infection (k) Bowel Disease

Figure 4.7: Feature importance weight visualization across 11 different disease category of Phylum
taxon level.
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(a) Cirrhosis (b) Autoimmune (c) Diabetes (d) Diarrhea

(e) Cancer (f) Dermatologic (g) Premature Born (h) Cardiovascular Disease

(i) Neurological Disease (j) Gastrointestinal Infection (k) Bowel Disease

Figure 4.8: Feature importance weight visualization across 11 different disease category of Class
taxon level.
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(a) Cirrhosis (b) Autoimmune (c) Diabetes (d) Diarrhea

(e) Cancer (f) Dermatologic (g) Premature Born (h) Cardiovascular Disease

(i) Neurological Disease (j) Gastrointestinal Infection (k) Bowel Disease

Figure 4.9: Feature importance weight visualization across 11 different disease category of Family
taxon level.
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(a) Cirrhosis (b) Autoimmune (c) Diabetes (d) Diarrhea

(e) Cancer (f) Dermatologic (g) Premature Born (h) Cardiovascular Disease

(i) Neurological Disease (j) Gastrointestinal Infection (k) Bowel Disease

Figure 4.10: Feature importance weight visualization across 11 different disease category of Genus
taxon level.
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(a) Cirrhosis (b) Autoimmune (c) Diabetes (d) Diarrhea

(e) Cancer (f) Dermatologic (g) Premature Born (h) Cardiovascular Disease

(i) Neurological Disease (j) Gastrointestinal Infection (k) Bowel Disease

Figure 4.11: Feature importance weight visualization across 11 different disease category of Species
taxon level.



CHAPTER V

Recovery of Transition Probabilities from Marginals of Two-Way
Tabular Data

5.1 Introduction

In this chapter, we formulate the transition matrix recovery problem as estima-

tion of a stochastic matrix of conditional probabilities from multiple experiments,

where we are given multiple two-way contingency tables with known margin

sums but missing inner cells. This formulation has application to a wide range

applications including bird migration [189], recommender systems [190], voting

data analysis [191, 192] which will be further discussed below in addition to

applications in credit risk modeling [193].

5.1.1 Related Work and Applications

Our formulation is related to estimation of the state transition matrix of a time

homogeneous discrete state Markov process when the data is temporal [194]. For

this problem the method of conditional least squares (CLS) [195, 196, 197, 198, 199]

is commonly applied to estimate the state transition matrix and its performance

has been analyzed both theoretically and in simulation [194]. However, CLS is

poorly matched to maximum likelihood estimator unless the data is Gaussian

distributed which is not the case in categorical setting we are interested in. Our

104
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formulation can also be related to probabilistic graphical models, in particular

the collective graphical model [189, 200] where individual data are assumed to

be sampled from a graphical model. However such models make additional

assumptions on the underlying (graphical) dependency structure between the

features (categories) of the data. In contrast, our proposed approach makes

no such assumptions on dependency structure. Next we describe two specific

application domains of our work and its relation to contingency table analysis.

Recommender systems. The transition matrix recovery problem studied here has

application to recommender systems in e-commerce, in particular to sequence-

aware recommender systems [190] and next-basket-analysis [201]. A recommender

system collects a matrix of counts of clicks on links, i.e., click through rates, on

web pages collected from a number of users, to build a profile of all the users.

This profile is used to target advertising to a particular user based on collaborative

filtering. In sequence aware recommender systems pairs of successive clicks,

which could be on the same or different webpages, are recorded and the estimated

transition matrix is used to refine the user profile to improve the pitch of targeted

advertising. Often, in e-commerce users are anonymous, which prevents tracking

of individual ID’s and thus only marginal data is available. Thus the transition

matrix is not directly observable and must be estimated from the marginals. Thus

the results in this chapter are directly applicable to such recommender systems.

Political election voting analysis. Our formulated transition matrix estimation

problem has application to analysis of voting systems [202, 203, 204]. For example,

in political science, exit polls often collect information on how voters voted in an
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election. They may also ask the voter how she voted in the last election or what

party affiliations were held by the candidates she voted for in a multi-category

election, e.g., an election for state legislature, federal congress, and presidential

candidates. Exit poll voting data is often separately aggregated according to

electoral districts and individual level voter-specific cross-tabulated data may

not be reported. In this case only marginal data per district is available and

the results in this chapter can be applied to recover the conditional probability

(transition) matrices associated with voter choices across the election categories.

This application will be illustrated with simulated and real data experiments in

Section 5.4.3 of this chapter.

Contingency table analysis. The transition matrix recovery problem we address

can be related to contingency table analysis. A two way contingency table is

a matrix of tabular data where each matrix entry, called a cell, corresponds to

the number of counts that occur in a pair of outcome categories. In classical

contingency table analysis the principal objective is to test hypotheses on the

probabilistic relations, called the ”cell probabilities,” between the row and column

covariates given empirical cell count data [205, 206]. In contrast, the objective

in this work is to recover the stochastic matrix (conditional probabilities of row

counts given observed count levels of the column variables) from marginal data

collected from multiple independent and related contingency tables. In the sequel

we will formulate the transition matrix recovery problem using the terminology

of contingency tables.
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5.1.2 Contributions and Organization

The main contributions of this chapter includes: an exact model with minimal

assumptions for the transition matrix recovery problem, three valid approxima-

tions of the exact model and a novel Riemannian gradient algorithm with Polyak

adaptive step size to obtain the Maximum Likelihood Estimatiors (MLE) of the

transition matrix.

The proposed methods are applied to a synthetic dataset and a real world

dataset from New Zealand general election [207] in comparison with CLS [195].

Our results show the scopes when those approximation apply. A further clustering

analysis using the estimated stochastic matrices across different electorate districts

is able to identify communities that are reflective of the demographics of New

Zealand.

The remainder of this chapter is organized as following: Section 5.2 formally

introduces the mathematical formulation of the transition matrix recovery problem,

the exact model along with three approximations in connection to CLS [195],

Section 5.3 introduces the proposed Riemannian gradient algorithm to obtain

the Maximum Likelihood Estimators (MLE), Section 5.4 includes application of

the methods to a synthetic dataset and the New Zealand general election dataset

[207], and Section 5.5 summarizes the major takeaways from the chapter.

5.2 Proposed Model

5.2.1 Mathematical formulation

Notations: We use bold upper case letters for matrices, bold lower case letters

for vectors and no bold lower case for scalars. The Hadamard (element-wise)

product of vectors a and b is denoted by a ◦ b, and Hadamard (element-wise)
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division is denoted by a⊘ b. diag denotes the function map a vector to a diagonal

matrix with the vector as its diagonal entries, and diagnal denotes the function

map a square matrix to a vector of its diagonal entries. We denote ∆m for the

m-dimensional probability simplex (i.e non-negative vectors of dimensional m that

sum to 1) and ∆m×d for the space of stochastic matrices of dimension m× d with

columns in m-dimensional probability simplex. Im denotes the identity matrix of

dimension m, and 1m denotes the all-ones vector in dimension m.

Problem Description: Data is collected from n independent experiments on choices

of Ni individuals, i = 1, . . . , n. In each experiment, an individual selects an item

k from Category 1, and an item j from Category 2, where k ∈ {1, . . . , d} and

j ∈ {1, . . . , m}. The experimenter only observe the marginal count data for each

experiment, i.e the histogram of selection counts from Category 1 and Category 2,

respectively. More precisely, for all the experiments ranging from i = 1, · · · n, we

denote the observed marginal count data as xi ∈Nd for category 1 and yi ∈Nm

for category 2 . In matrix form the marginal count data can be expressed as

two matrices X :=


| | |

x1 · · · xn

| | |

 ∈Nd×n and Y :=


| | |

y1 · · · yn

| | |

 ∈Nm×n. The

total population count, i.e the number of individuals participating in the i-th

experiment or equivalently the sum of i-th column of matrix X or Y , which are

identical, is Ni. Of interest to the experimenter is the conditional probability that

an individual selects item j in Category 2 given that they select item k in Category

1. The conditional probabilities can be estimated from the individual cross tabular

data. However, the experimenter only observes population level marginal data.
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Stated more concretly, the experimenter is interested in estimating the stochastic

matrix Π ∈ ∆m×d of conditional probabilities Πjk = P(Y = j | X = k) where

j ∈ {1, · · · , m} and k ∈ {1, · · · , d}. We denote each columns of Π as π j for

j = 1, · · · , d. See fig. 5.1 for a visualization of the observed data.

Figure 5.1 Example of available data to the transition matrix recovery problem. ”?” means the
cell value is missing. The columns of contingency tables corresponds to the dinstinct items of
Cateogory 1 and rows corresponds to dinstinct items of Category 2.

Category 2

Category 1

Item 1 . . . Item d Total

Item 1 ? ? ? 1500

...
...

...
...

...
Item m ? ? ? 2000

Total 1000 · · · 500 6000

...

Category 2

Category 1

Item 1 . . . Item d Total

Item 1 ? ? ? 1000

...
...

...
...

...
Item m ? ? ? 4000

Total 800 · · · 1300 10000

5.2.2 The Exact Model

We make the following homogeneity assumption: given that for an individual

that selects k-th item of Category 1, her selection in Category 2 is identical and

independently distributed as a categorical distribution with probability vector πk

which does not depend on the experiment index i = 1, · · · , n. Hence conditioned

on Category 1 item counts xi, the Category 2 item counts yi are given by:



110

zk | xi ∼ Mul (xki, πk) ∀k = 1, · · · , d.

yi | xi =
d

∑
k=1

zk.(5.1)

where xki denotes the counts over items in Category 1 observed in the i-

th experiment, k = 1, . . . , d, i = 1, · · · , n, Mul (N, p) denotes the multinomial

distribution with total count N and probability vector p, and the hidden variables

zk represent the counts over items in Category 2 from all the individuals who

selected item k in Category 1. The resulting compound distribution is a special

case of Poisson multinomial distribution (generalized multinomial distribution)

[208, 209, 210]. Since the evaluation of this distribution function has combinatorical

complexity [210], inference with respect to this exact model is computationally

intractable, which is the main motivation for approximations introduced n the

following subsection.

5.2.3 Likelihood Approximations

In this subsection, we present 4 different ways to approximate the intractable

negative log-likelihood function of the model proposed in Eqn. 5.1 including

the classical conditional least squares (CLS) [195] and the conditions when those

approximations are applicable.

Conditional Least Squares

Conditional least squares (CLS) is based on the observation that, conditioned

on xi the expected value of yi is Πxi. Thus, a method of moments estimator is

naturally the solution of the constrained least squares problem:

(5.2) min
Π∈∆m×d

f (Π) .
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where f (Π) = ∥ΠX − Y∥2
F. This approximation is valid when population size Ni

is sufficient large and the covariance matrix is nearly homogeneous (i.e a constant

factor times identity matrix).

Normal Approximation

As a consequence of central limit theorem [209, 210], when the population size

(Ni) is sufficient large, the likelihood function of the model in Eqn. 5.1 can be well

approximated by a degenerate multivariate Gaussian distribution with following

mean and covariance matrix:

µi = Πxi,

Σi = diagnal (Πxi)−Π diagnal (xi)Π⊤.(5.3)

This leads to negative conditional log-likelihood function, up to an unimportant

constant:

(5.4) l (Y |X; Π) =
n

∑
i=1

(
1
2
(yi − µi)

⊤
Σ†

i (yi − µi) +
1
2

plog det (Σi)

)
.

where Σ† denotes the pseudo inverse and plog det denotes the pseudo log-

determinant.

As discussed in [210], an alternative formulation to work around the degeneracy

is to discard the last element of each yi since conditioned on xi the summation of

yi is fixed and the last entry is determined by the fixed sum constraint. Denote

the modified data as Ỹ and the modified stochastic matrix Π̃ :=

Im−1

0

Π ∈

R(m−1)×d (Π with last row removed). Then this leads to the non-degenerate
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normal approximation with mean and covariance matrix:

µ̃i = Π̃xi,

Σ̃i = diagnal
(
Π̃xi

)
− Π̃ diagnal (xi) Π̃⊤.(5.5)

resulting in the negative conditional log-likelihood function, up to a constant:

(5.6) l (Y |X; Π) =
n

∑
i=1

(
1
2
(ỹi − µ̃i)

⊤
Σ̃i
−1 (ỹi − µ̃i) +

1
2

log det
(
Σ̃i
))

.

Though Eqn. 5.4 and Eqn. 5.6 are well defined objective functions in theory,

their evaluations run into numerical issues when Π is permutation similar a block-

wise diagonal matrix due to rank deficiency in the covariance matrix. Instead, we

propose to minimize:

(5.7) f (Y |X; Π) = l (Y |X; Π) + λ
m

∑
j=1

d

∑
k=1

Πjk log
(
Πjk
)

where l (Y |X; Π) is from either Eqn. 5.4 or Eqn. 5.6, and λ is a hyperparameter that

controls the strength of regularization. This is known as entropy regularization

and widely used in statistics and machine learning when working with discrete

distributions [211, 212, 213].

Poisson Approximation

As a consequence of Poisson approximation theorems [214, 215, 208], when

the entries of xi are sufficiently large and the columns of stochastic matrix Π are

close to uniform (i.e all entries have same values 1
m ), we can approximate the

conditional distribution yi | xi by a multivariate Poisson distribution with mean

parameter Πxi. This leads to a negative conditional log-likelihood function, up to

a constant:

(5.8) l (Y |X; Π) =
n

∑
i=1

m

∑
j=1
−yji log

(
d

∑
k=1

Πjkxki

)
.
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Multinomial Approximation

Alternatively we can approximate the Poisson multinomial distribution by a

standard multinomial distribution, and the approximation will be exact when

all the columns of the stochastic matrix are identical (i.e the two categories are

independent). This leads to a negative conditional log-likelihood function, up to a

constant:

(5.9) l (Y |X; Π) =
n

∑
i=1

m

∑
j=1
−yji log

(
d

∑
k=1

Πjk
xki

∑d
l=1 xli

)
.

Observe that this is a weighted version of Eqn. 5.8.

5.3 Approximate Maximum Likelihood with Riemannian Gradient Algorithm

Due to the non-trivial composition structure of the negative likelihood functions

in Eqns. (5.4), (5.6), (5.8), (5.9) together with the constraints that the columns of

the transition matrix Π belong to the probability simplex, analytical expressions

for the maximum likelihood solutions are intractable. Thus, we propose to use

iterative methods to solve for the maximum likelihood estimators. In particular,

we use a novel Riemannian gradient algorithm with adaptive step size to exploit

the geometric structure of the underlying simplex constraint (Algorithm. 4). The

adaptive step size we propose is an extension of previous work [216, 217, 218]

to the Riemannian manifold based on the Polyak step size rule [216]. Section

5.3.1 introduces the general purpose algorithm and Section 5.3.2 summarize the

gradient computations of the negative log-likelihood functions introduced in

Section 5.2.3.
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5.3.1 Riemannian Gradient Algorithm

In this subsection, we present the novel Riemannian gradient algorithm with

adaptive Polyak step size, and this is a general purpose algorithm applicable

beyond the transition matrix recovery problem considered in this chapter.

The Riemannian gradient algorithm [219, 220] is a class of iterative methods

that solve the constrained optimization problem:

(5.10) min
u∈M

f (u) .

whereM is Riemannian manifold and f is a smooth function. It is an extension

of the standard gradient descent algorithm to the Riemannian manifold. In the

Riemannian gradient algorithm, the standard euclidean gradient is replaced with

Riemannian gradient (Def. V.1), and instead of performing an update at every

iteration based on line segment (ut+1 = ut − η∇ f (ut)), Riemannian gradient

algorithm moves along the parameterized curve on the manifold defined by the

retraction map (Def. V.2). The formal definitions of Riemannian gradient and

retraction map are given below:

Definition V.1 (Riemannian Gradient on an Embedded Manifold of Rd, Chapter

3.8 of [220] ). Given a smooth function f on an embedded submanifold manifoldM⊆ Rd

with standard Euclidean metric, then the Riemannian gradient of f at location u is defined

as:

(5.11) grad f (u) := projTu(M) (∇ f (u)) .

where ∇ f (u) is the standard Euclidean gradient, and projTu(M) is the projection operator

maps a vector to Tu (M) (tangent space at point u).
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Definition V.2 (Retraction Map, Chapter 3.6 of [220]). A Retraction on a manifold

M at location u is a smooth map:

(5.12) Ru : TuM→M : v→ Ru (v)

such that each curve c (t) = Ru (tv) satisfies c (0) = u and c′ (0) = v. This is a first

order approximation to Geodesic (i.e the shortest path between points on the manifold),

and the parameterized curve c (t) is the extension of line segment in the Euclidean case.

With proper choice of step size (ηt), the vanilla Riemannian gradient algorithm

is:

(5.13) ut+1 = Rut (−ηtgrad f (ut)) .

In the particular case of ∆m×d considered in this chapter, Riemannian Gradient

of a smooth function f with Euclidean gradient function ∇ f is:

(5.14) grad f (Π) = Π ◦∇ f (Π)−Π diagnal
(

diag
(
∇ f (Π)⊤Π

))
.

For the negative likelihood functions in Eqs. (5.4), (5.6), (5.8), (5.9), the compu-

tations of Euclidean gradients are presented in the next subsection.

The retraction map RΠ : TΠ (∆m×d)→ ∆m×d at location Π is given by:

(5.15) RΠ (V) := Π ◦ exp (V)diagnal
(

1⊤mΠ ◦ exp (V)
)−1

.

where exp is element-wise exponentiation, and this is a matrix extension of the

exponentiated gradient or multiplicative weights [221].

The Polyak step size rule is first proposed in [216] in Euclidean setting, and is

commonly used for subgradient method [217, 222]. Recently, [223, 218] extend it

to stochastic optimization with both convergence guarantee and great empirical
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success. In this section, we apply the Polyak step size rule to the Riemannian

setting, where Algorithm 3 summarize the Riemannian gradient algorithm with

Polyak step size with a fixed lower bound of the objective function, and Algorithm

4 is an extension of [217] to Riemannian setting where the lower bound estimate

is iterative refined.

Algorithm 3 Riemannian Gradient algorithm with Polyak stepsize
Inputs: Data (X, Y), maximum number of iteration T,
objective function f (Eqn. 5.7, Eqn. 5.8, Eqn. 5.9),
objective lower bound f̃
Intermediate: step size ηt
Initialize: Π0

for t = 0, · · · T − 1 do
gt ← grad f (Πt) (Eqn. 5.14)

ηt ← min
(

f (Πt)− f̃
2∥gt∥

2
2

, 1√
t+1

)
Π̂t+1 ← RΠt (−ηt∇t) (Eqn. 5.15)

end for
return MLE estimator Πt⋆ , where t⋆ = arg mint<T{ f (Πt)}

Algorithm 4 Riemannian Gradient algorithm with adaptive lower bound estimate

Inputs: Data (X, Y), initial objective lower bound f̃0
maximum number of epoch K, maximum number of inner iterations T
Initialize: Π̂ randomly

for τ = 0, · · · , K− 1 do
Let Πτ+1 be the output of Algorithm. 3 using input Πτ , T, f̃τ

f̃τ+1 ← f (Πτ+1)+ f̃τ
2

end for
return MLE estimator Πτ⋆ , where τ⋆ = arg minτ<K{ f (Πτ)}

5.3.2 Gradient Computation

The Riemannian gradient in Eqn. 5.14 requires computation of Euclidean

gradient, and the gradients of all the negative log-likelihood in Eqs. (5.4), (5.6),

(5.8), (5.9) require matrix differential computations. The reader is referred to [224]

for a detailed discussion on matrix differentiation rules.
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Useful Differential Results: we first summarize a few useful differential results

that will be used to compute the gradients. See [225, 226, 224] for derivations.

d log det (Σ) = tr
(

Σ−1
)

d Σ,

d Σ−1 = −Σ−1 (d Σ)Σ−1,

d plog det (Σ) = tr
(

Σ†
)

d Σ,

d Σ† = −Σ† (d Σ)Σ† + Σ†Σ† (d Σ)
(

I − ΣΣ†
)
+
(

I − Σ†Σ
)
(d Σ)Σ†Σ†.

For a smooth matrix-variate scalar function f , the following relates the matrix

differential to the gradient:

(5.16) d f (A) = tr ((dA) G)⇐⇒ ∇ f (A) = G.

Using the results above, we can compute following (Euclidean) gradients:

(For Eqn.5.4) ∇ f (Π) =
n

∑
i=1

(
−
(

Ai + Σ†
i

)
Π diagnal (xi) +

(
0.5Ai + 0.5 diag

(
Σ†

i

)
+ Σi (µi − yi)

)
x⊤i
)

,

(For Eqn.5.6) ∇ f (Π) =
n

∑
i=1

(
−
(

Ãi + Σ̃i
−1
)

Π̃ diagnal (xi) +
(

0.5Ãi + 0.5 diag
(

Σ̃i
−1
)
+ Σ̃i (µ̃i − ỹi)

)
x⊤i
)

,

(For Eqn.5.8) ∇ f (Π) = − (Y ⊘ (ΠX)) X⊤,

(For Eqn.5.9) ∇ f (Π) = − (Y ⊘ (ΠP))P⊤.

Where µi, Σi are function of Π in Eqn. 5.3. Defining the quantity Ri =

(yi − µi) (yi − µi)
⊤ , Ai is given by:

Ai = −Σ†
i RiΣ

†
i +

(
Id − ΣiΣ

†
i

)
RiΣ

†
i Σ†

i + Σ†
i Σ†

i Ri

(
Id − ΣiΣ

†
i

)
.

Π̃ and ỹi are the modified representation discussed in Section 5.2.3, µ̃i, Σ̃i are
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functions of Π̃ defined in Eqn. 5.5, Ãi is given by:

Ãi = −Σ̃−1
i (ỹi − µ̃i) (ỹi − µ̃i)

⊤
Σ̃−1

i .

P is the normalized version of data matrix X with entries Pki =
xki

∑d
l=1 xli

.

5.4 Experiments

In this section, we evaluate the performance of our proposed likelihood based

Riemannian methods on both the simulated data and the New Zealand general

election data[207]. The conditional least squares (CLS), which is implemented by

applying Algorithm 4 to Eqn. 5.2, is compared as as a benchmark.

5.4.1 Evaluation Metrics

Since the columns of stochastic matrices Π are in probability simplex, we

evaluate the estimation performance by applying various metrics to each column

and computing their averages. The list of metrics summarized in Table 5.3

includes Jensen Shannon Divergence, Hellinger Distance, mean square error, and

two newly introduced metrics Maximum Index Rank Agreement (MIRA)1 and

Top Cumulative Probability Intersection (TCPI)2.
1MIRA quantifies the agreement between mode of p and mode of p̂
2TCPI quantifies the amount overlap between the typical set of p and p̂
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Table 5.3 Summary of Evaluation Measures in Terms of p, p̂ ∈ ∆m.
Evaluation Metric Expression Range

Jensen-Shannon Divergence (JSD) JSD(p, p̂) = 1
2

m
∑

j=1
pj log

(
2pj

pj+ p̂j

)
+ 1

2

m
∑

j=1
p̂j log

(
2p̂j

pj+ p̂j

)
[0, 1]

Hellinger Distance (HD) HD(p, p̂) = 1√
2

√
m
∑

j=1
(
√pj −

√
p̂j)2 [0, 1]

Mean Square Error (MSE) MSE(p, p̂) = 1
m

m
∑

j=1
(pj − p̂j)

2 [0, 2
m ]

Maximum Index Rank Agreement (MIRA)
j⋆ = arg maxj pj

MIRA(p, p̂) =
∣∣{j ∈ {1, . . . , m} : p̂j > p̂j⋆}

∣∣+ 1 {1, . . . , m}

Top Cumulative Probability Intersection (TCPI)

Assume p, p̂ sorted in descending order:

m⋆ = min{m′ : ∑m′
j=1 pj ≥ 0.5}

Ap = {pj}m⋆

j=1

A p̂ = { p̂j}m⋆

j=1

TCPI(p, p̂) = |Ap∩Ap̂|
m⋆

[0, 1]

5.4.2 Synthetic Datasets

In this subsection, we evaluate the transition matrix recovery algorithms on

multiple synthetic datasets constructed to probe the impact of the following

factors on estimation: category imbalance (m), sample size (n), total number of

counts (N), and sparsity level of the ground truth stochastic matrix (Π ∈ ∆m×d ).

Each factor has three different configurations, and for every combination of the

configurations we simulate 10 replicates. This results in a total of 810 datasets.

Experiment setups: In every dataset, we set the number of items from Category 1

as d = 10. The number of items from Category 2 (m) takes a value from the set

{5, 10, 20}. For each m, columns of the stochastic matrix (Π ∈ ∆m×d) are sampled

from Dirichlet distribution with parameters choosen from {m0.5, m−0.5, m−1}3, see

Fig. 5.2 for a heatmap visualization of the simulated stochastic matrices. The

number of experiments (n) is selected from {5, 10, 40}. To introduce variability in

the total counts across columns of matrix (X), the count (Ni) for the i-th experiment

is generated using a negative binomial distribution with a rate parameter 1 and
3Dirichlet distribution with parameters (α) that are smaller in values has a density function more concentrated around

sparse (spiky) distributions.
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a probability parameter 1
N0
d +1

, where N0 is selected from {20, 200, 2000}. This

results in an expected total column sum of 20, 200, and 2000 respectively.
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Figure 5.2: Heat map of the simulated stochastic matrix with respect to m (number of items from
category 2).

Estimation Results: All the proposed methods based on different approximations

from Section 5.2 are evaluated on these synthetic datasets, and the results are

summarized in Fig. 5.3 based on Hellinger Distance since its magnitude is

invariant to different m, and all metrics share similar trends. Results for rest of

the metrics is included in Section 4.6 of the appendix. Our results suggest that

number of counts is the most influential factor followed by number of samples.

While all the algorithms have similar performances, the two algorithms based

on multivariate Gaussian approximations (Section 5.2.3) are the most sensitive to

number of counts and sparsity level of the stochastic matrix. The two algorithms

signficantly outperforms other methods in experiments with small sample size,

high count and dense stochastic matrix, and degrade noticeably in the low count

regime.
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Figure 5.3: Summary of the prediction performance on all the 81-configurations using Hellinger
Distance (HD) as the evaluation metric. HD is bounded between 0 and 1 with 0 means perfect
recovery of the ground truth stochastic matrix. Among the four factors considered, number of
counts is the most influential factor followed by number of samples. While all the algorithms have
similar performance, the two algorithms based on multivariate Gaussian approximations (Section
5.2.3) are the most sensitive to number of counts and sparsity level of the stochastic matrix. The
two algorithms outperforms other methods in experiments with small sample size, high count
and dense stochastic matrix, and degrade noticeably in the low count regime.

5.4.3 Election Dataset

In New Zealand, electors are apportioned into districts and each voter has

two votes where one is for a national party candidate and the other for a local
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candidate. This election dataset is publicly available in tabular format collected

from each district. We emulate the partial observation exit poll data that only

measures marginals for national party selection (Category 1) and local election

(Category 2) by summing over the rows and columns of the tabular data. This

emulates a real world scenario where the experimenter only has access to the

marginals but we have the full ground truth contingency table to evaluate the

conditional probabilities recovery accuracies of the proposed methods. The

dataset was obtained from R-package [207] and contains election results from

2002, 2005, 2008, 2011, 2014, 2017 and 2020.

Data Preprocessing Since the specific local candidates are distinct for all the

districts and vary from year to year, we aggregate the data further by local

candidates’ party affiliation. Since we expect the voting behavior vary significantly

from district to district, while have similar trends across years within the same

district, we treat distinct districts as equivalent to different dataset in the synthetic

data experiment (i.e they do not share same transition matrix), and different years

as different experiments. We retain districts who have data for all years i.e. all 7

elections resulting in a total of 49 districts. In addition, we take the union set of all

the parties present in the national elections and local elections across 7 elections

to ensure all the transition metrics have same dimension for the purpose of our

clustering analysis. The resulting total number of parties present is 55 and 89

respectively for the national elections and the local elections.

Estimation Result We run the proposed methods along with conditional least

squares to estimate the stochastic matrix Π for each district across 7 elections.
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Note the jk-th entry Πjk will correspond to the probability of a voter voting for

party j in the local election given that the voter voted for party k in the national

ballot. The evaluations of the algorithms are summarized in Table 5.4.

Clustering Analysis We obtains 49 stochastic matrices which summarize the

conditional voting behaviors of each district across the 7 elections. To illustrate

that the data has community structure, we perform a clustering analysis on 49

stochastic matrices to identify districts that share similar voting patterns. We

visualize the clustering result based on Jensen Shannon divergence in Fig. 5.4,

where the rows and columns corresponds to the electorate districts and are ordered

based on clustering. The algorithm is able to identity a top cluster includes Te Tai

Hauauru, Te Tai Tonga, Waiariki, Tamaki Makaurau and Te Tai Tokerau, and they

are the Māori electorates (i.e special electorates that give reserved positions to

representatives of New Zealand Parliament). In addition, the two closest districts

identified are Bay of Plenty and Tauranga which are both part of the Bay of Plenty

Region with similar demographics.

Table 5.4 Summary of the prediction performance on the New Zealand general election dataset.
The number in bold means the best performing algorithm for that metric, and the number in
parentheses represent standard deviation across 49 distinct districts. Note the first 5 rows of
metrics assess the overall agreement, while the last two metrics emphasize on the typical set of the
probability mass which are more informative since we are in small sample region with 7 different
election years total.

Metric Degenerate Normal Approximation Normal Approximation Multinomial Approximation Poisson Approximation CLS
JSD ([0,1]) 0.4233 (0.05422) 0.429 (0.05864) 0.4748 (0.04223) 0.4396 (0.03361) 0.4264 (0.02712)
HD ([0,1]) 0.01344 (0.0009977) 0.01355 (0.001098) 0.0144 (0.0007717) 0.01371 (0.000593) 0.01351 (0.0004604)

MSE ([0,0.05]) 0.02264 (0.007572) 0.02436 (0.007907) 0.0307 (0.007618) 0.02051 (0.006633) 0.01738 (0.006817)
MIRA {1,. . . , 89 } 8.928 (2.008) 8.652 (2.085) 8.652 (2.153) 10.83 (2.423) 12.44 (2.384)

TCPI [0,1] 0.2474 (0.05938) 0.2515 (0.06291) 0.234 (0.06144) 0.2006 (0.05974) 0.2007 (0.05318)
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Figure 5.4: Hierarchical Clustering of 49 electoral districts of New Zealand based on the estimated
stochastic matrix using Hellinger Distance. Observe the top cluster identity by the algorithm
includes Te Tai Hauauru, Te Tai Tonga, Waiariki, Tamaki Makaurau and Te Tai Tokerau are Māori
electorates, which are special electorates that give reserved positions to representatives of New
Zealand Parliament. In the second cluster, the two closest districts identified are Bay of Plenty and
Tauranga which are both part of the Bay of Plenty Region with similar demographics.

5.5 Conclusion

In this chapter, we propose an exact model with minimal assumptions for the

transition recovery problem where only marginals of multiple two-way tabular

data are available. To overcome the computational difficulty of the exact model,

we provide three valid approximations along with the conditions when they apply.
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A novel Riemannian gradient algorithm with Polyak step size is applied to obtain

the Maximum Likelihood Estimators (MLE) for the transition matrix. Simulation

studies show the scope when those approximation apply. Our experiments on

real world dataset from New Zealand general election dataset demonstrate the

utility of the method to recover the transition matrix and detect communities

within electorate districts based on voting behaviors that are reflective of the

demographics.

There are several promising directions for future work. One is to integrate

Bayesian frameworks into the proposed model, and this would allow the use

of prior knowledge about the structure of the stochastic matrix to enhance the

estimation performance and offer uncertainty quantification. Second is to relax the

assumption so that the transition matrices of interest have a hierarchical structure

that is dependent on experiment index, and this formulation include estimation

of state transition matrix from time-inhomogeneous discrete Markov chain as a

special case. Another future direction is to study the convergence property of the

novel Riemannian gradient algorithm and its extension to a stochastic algorithm.

Though the algorithm has shown promising empirical success in this chapter, a

rigorous analysis will provide insights on the method and leading to possible

extensions and improvements.
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5.6 Appendix
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Figure 5.5: Summary of the prediction performance on all the 81-configurations using Jesen-
Shannon Divergence (JSD) as the evaluation metric. Jesen-Shannon Divergence is bounded
between 0 and 1 with 0 means perfect agreement with the ground truth stochastic matrix.
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Figure 5.6: Summary of the prediction performance on all the 81-configurations using Mean
Square Error (MSE) as the evaluation metric. Mean Square Error is bounded between 0 and 1

m
with 0 means perfect agreement with the ground truth stochastic matrix.
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Figure 5.7: Summary of the prediction performance on all the 81-configurations using Maximum
Index Rank Agreement (MIRA) as the evaluation metric. Maximum Index Rank Agreement is
bounded between 1 and m with 1 means perfectly agreement with the ground truth stochastic
matrix in terms of location of the largest entry.
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Figure 5.8: Summary of the prediction performance on all the 81-configurations using Top
Cumulative Probability Intersection (TCPI) as the evaluation metric. Top Cumulative Probability
Intersection is bounded between 0 and 1

m with 1 means perfect agreement with the ground truth
stochastic matrix in terms of typical set.



CHAPTER VI

Conclusion and Future Work

This thesis focus on methods developed to solve the classical inverse problem

and the extend inverse problems arise from real world applications including:

1. a hierarchical Bayesian approach to neutron spectrum unfolding problem

2. a graphical model for fusing diverse microbiome data

3. a hierarchical Bayesian multitask logistic regression model for microbiome

Profiling

4. transition matrix recovery problem with application to voting data

All of the chapters in this thesis share a common theme of developing statistical

models that taking into account for our understandings of the underlying systems,

efficient computational methods and interpretations of our findings.

For the unfolding problem, the present unfolding method could also be coupled

to classification algorithms to infer the type and amount of fissile material in

unknown neutron sources, for nonproliferation and safeguarding applications.

Approximate Bayesian methods can also be investigated for robust unfolding with

reduced processing burden.

For fusing diverse microbiome data, one possible future research area is to

generalize the model to capture covariance structures of absence-presence datasets
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by modeling the binary observations using Bernoulli distributions. Another gener-

alization can be achieved by the incorporation of covariates such as temperature,

ph, and physical/chemical perturbations, that may change the composition of the

species. The mean of the latent variables can be made a function of the covariates

to accomplish that. One another possible area is to incorporate system dynamics

into the latent space so as to explicitly capture temporal correlations. In particular,

there is increasing interest in collecting longitudinal microbiome data for studying

adaptation, resilience, and dynamics over time. The incorporation of a state-space

dynamical model into our framework can reveal the temporal evolution of the

interactions between the genomes. Another future direction is to improve the

parsimony of the model by incorporating sparsity into the latent representation by

using sparsity-inducing priors for the covariance or inverse covariance (precision)

matrices.

For microbiome Profiling, one future direction is to replace the logit function

with other link functions (e.g a probit link function) that have flatter tails so

the model is less prone to overconfidence. Second direction is to extend our

model to multi-label classification problems, where each task contains multiple

binary predictions (e.g diagnosis of different diseases on the same patient). This

generalization is of particular interests to the human health prediction application

considered in this chapter, since the diseases are not mutually exclusive. Another

related extension is to consider the multiclass classification problem, where each

task is a classification problem with more than 2 labels (e.g different stages of a

disease).

For transition matrix recovery problem, one future direction is to integrate
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Bayesian frameworks into the proposed model, and this would allow the use

of prior knowledge about the structure of the stochastic matrix to enhance the

estimation performance and offer uncertainty quantification. Second is to relax the

assumption so that the transition matrices of interest have a hierarchical structure

that is dependent on experiment index, and this formulation include estimation

of state transition matrix from time-inhomogeneous discrete Markov chain as a

special case. Another future direction is to study the convergence property of the

novel Riemannian gradient algorithm and its extension to a stochastic algorithm.

Though the algorithm has shown promising empirical success in this chapter, a

rigorous analysis will provide insights on the method and leading to possible

extensions and improvements.
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[151] André R Gonçalves, Fernando J Von Zuben, and Arindam Banerjee. Multi-task sparse
structure learning with gaussian copula models. The Journal of Machine Learning Research,
17(1):1205–1234, 2016.

[152] Shengbo Guo, Onno Zoeter, and Cédric Archambeau. Sparse bayesian multi-task learning.
Advances in Neural Information Processing Systems, 24, 2011.

[153] Ya Xue, Xuejun Liao, Lawrence Carin, and Balaji Krishnapuram. Multi-task learning for
classification with dirichlet process priors. Journal of Machine Learning Research, 8(1), 2007.

[154] Yi Zhang and Jeff Schneider. Learning multiple tasks with a sparse matrix-normal penalty.
Advances in neural information processing systems, 23, 2010.

[155] Andre Goncalves, Priyadip Ray, Braden Soper, David Widemann, Mari Nygård, Jan F
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[157] Cheng Zhang, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt. Advances in
variational inference. IEEE transactions on pattern analysis and machine intelligence, 41(8):2008–
2026, 2018.

[158] Fredrik H Karlsson, Valentina Tremaroli, Intawat Nookaew, Göran Bergström, Carl Johan
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[182] Dankmar Böhning and Bruce G Lindsay. Monotonicity of quadratic-approximation algo-
rithms. Annals of the Institute of Statistical Mathematics, 40(4):641–663, 1988.

[183] David R Hunter and Kenneth Lange. A tutorial on mm algorithms. The American Statistician,
58(1):30–37, 2004.

[184] Tommi S Jaakkola and Michael I Jordan. A variational approach to bayesian logistic
regression models and their extensions. In Sixth International Workshop on Artificial Intelligence
and Statistics, pages 283–294. PMLR, 1997.

[185] Jan Drugowitsch. Variational bayesian inference for linear and logistic regression. arXiv
preprint arXiv:1310.5438, 2013.

[186] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation
with the graphical lasso. Biostatistics, 9(3):432–441, 2008.



146

[187] Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation and
model selection. In Ijcai, volume 14, pages 1137–1145. Montreal, Canada, 1995.

[188] Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabilities with supervised
learning. In Proceedings of the 22nd international conference on Machine learning, pages 625–632,
2005.

[189] Liping Liu, Daniel Sheldon, and Thomas Dietterich. Gaussian approximation of collective
graphical models. In International Conference on Machine Learning, pages 1602–1610. PMLR,
2014.

[190] Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. Sequence-aware recommender
systems. ACM computing surveys (CSUR), 51(4):1–36, 2018.

[191] Gary King. A solution to the ecological inference problem: Reconstructing individual behavior from
aggregate data. Princeton University Press, 1997.

[192] Seth R Flaxman, Yu-Xiang Wang, and Alexander J Smola. Who supported obama in 2012?
ecological inference through distribution regression. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 289–298, 2015.

[193] Matthew T Jones. Estimating markov transition matrices using proportions data: an
application to credit risk. 2005.

[194] Garrett Bernstein and Daniel Sheldon. Consistently estimating markov chains with noisy
aggregate data. In Artificial intelligence and statistics, pages 1142–1150. PMLR, 2016.

[195] George A Miller. Finite markov processes in psychology. Psychometrika, 17(2):149–167, 1952.

[196] Albert Madansky. Least squares estimation in finite markov processes. Psychometrika,
24(2):137–144, 1959.

[197] Dennis J Aigner and Stephen M Goldfeld. Estimation and prediction from aggregate data
when aggregates are measured more accurately than their components. Econometrica: Journal
of the Econometric Society, pages 113–134, 1974.

[198] Adriaan P Van Der Plas. On the estimation of the parameters of markov probability models
using macro data. The Annals of Statistics, 11(1):78–85, 1983.

[199] John David Kalbfleisch, Jerald Franklin Lawless, and William M Vollmer. Estimation in
markov models from aggregate data. Biometrics, pages 907–919, 1983.

[200] Rahul Singh, Isabel Haasler, Qinsheng Zhang, Johan Karlsson, and Yongxin Chen. Inference
with aggregate data in probabilistic graphical models: An optimal transport approach. IEEE
Transactions on Automatic Control, 67(9):4483–4497, 2022.

[201] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing personal-
ized markov chains for next-basket recommendation. In Proceedings of the 19th international
conference on World wide web, pages 811–820, 2010.
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aggregate data and exit polls for the estimation of voter transitions. Sociological Methods &
Research, 48(2):296–325, 2019.



147

[204] Rafael Romero, Jose M Pavı́a, Jorge Martı́n, and Gerardo Romero. Assessing uncertainty of
voter transitions estimated from aggregated data. application to the 2017 french presidential
election. Journal of Applied Statistics, 47(13-15):2711–2736, 2020.

[205] Karl Pearson. On the general theory of multiple contingency with special reference to partial
contingency. Biometrika, 11(3):145–158, 1916.

[206] Alan Agresti. Categorical data analysis, volume 792. John Wiley & Sons, 2012.

[207] Jose M Pavı́a. ei. datasets: real data sets for assessing ecological inference algorithms. Social
Science Computer Review, 40(1):247–260, 2022.

[208] Bero Roos. Metric multivariate poisson approximation of the generalized multinomial
distribution. Theory of Probability & Its Applications, 43(2):306–316, 1999.

[209] Constantinos Daskalakis, Gautam Kamath, and Christos Tzamos. On the structure, covering,
and learning of poisson multinomial distributions. In 2015 IEEE 56th annual symposium on
foundations of computer science, pages 1203–1217. IEEE, 2015.

[210] Zhengzhi Lin, Yueyao Wang, and Yili Hong. The poisson multinomial distribution and its
applications in voting theory, ecological inference, and machine learning. arXiv preprint
arXiv:2201.04237, 2022.

[211] Yves Grandvalet and Yoshua Bengio. Entropy regularization., 2006.

[212] John Schulman, Xi Chen, and Pieter Abbeel. Equivalence between policy gradients and soft
q-learning. arXiv preprint arXiv:1704.06440, 2017.
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